• Title/Summary/Keyword: FLIC(Fluid in Cell)

Search Result 4, Processing Time 0.022 seconds

Flow field Analysis In Puffer Type Interrupters of GIS/GCB (파퍼형 GIS/GCB의 유동특성 해석)

  • Song, K.D.;Shin, Y.J.;Park, K.Y.;Choi, Y.G.;Song, W.P.;Kang, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1512-1516
    • /
    • 1994
  • FLIC(Fluid in cell) method has been used for analyzing a cold gas flow field in an interrupter of a circuit treater since 1970s. In this paper FLIC method is applied to calculation of a cold gas flow and then combined with the simple are analysis method in order to investigate the flow field characteristics in a puffer type interrupter rated at 145kV 40kA. The results for a cold gas flow agree with the experimental measurement well. The other results such as pressure rise, arc temperature, post-arc current and so forth am also reasonable and show the possibility that the combined program can be applied to the design of UHV interrupters.

  • PDF

The application of a numerical technique to the current interruption properties of 800kV gas circuit breaker - Characteristics of gas flow (800kV 가스차단기의 차단성능평가를 위한 수치해석 적응 - 유동특성)

  • Choi, Y.K.;Song, K.D.;Park, K.Y.;Shin, Y.J.;Chulkov, V.V.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1888-1891
    • /
    • 1996
  • Recently, FLIC(Fluid In Cell) method has been widely used for the compressible. flow computation. A program which adopts the FLIC method and can analyze the flow conditions with arc in the interrupter was developed in our team. It was applied to the 800kV class gab circuit breaker for flow conditions with arc, and the results are presented and discussed in this paper.

  • PDF

A Study on the Computational Technique of Cold Gas Flow in Puffer Interrupter (파퍼식 차단부의 냉가스 유동해석기법에 관한 연구)

  • Choi, Y.K.;Song, K.D.;Shin, Y.J.;Park, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.104-108
    • /
    • 1997
  • The puffer type GCB(gas circuit breaker) has been widely used in modern transmission power system. Understanding the motion of cold $SF_6$ gas flow is essential for the better design of those GCB's. For this purpose, a program using the so-called FLIC(Fluid-In-Cell) method has been developed and applied to a puffer type GCB. The calculated results are compared with those from the measurement and the computation by commercial CFD (Computational Fluid Dynamics) package 'RAMPANT' and show fairly good agreement.

  • PDF

Development of a 170kV 50kA Capacitorless Gas Circuit Breaker

  • Park, K. Y.;K. D. Song;Y. H. Oh;W. P. Song;J. H. Kang;Park, S. W.
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.3
    • /
    • pp.73-76
    • /
    • 2003
  • In modern EHV (Extra High Voltage) class GCBs (Gas Circuit Breakers), the interruption capability for SLF (Short Line Fault) is one of the most important aspects of performance required for GCBs. Up to now, the SLF interruption capability of EHV class GCBs was partially assisted by the adoption of capacitors able to decrease the dV/dt of the TRV (Transient Recovery Voltage), particularly the TRV on the line side. This paper describes the technique to increase the SLF interruption capability of EHV class GCBs as well as the procedure to develop capacitorless l70kV 50kA GCB.