• Title/Summary/Keyword: FLAPW method

Search Result 49, Processing Time 0.033 seconds

Electronic Structures, Magnetic, and Superconducting Properties of bcc Ni and V-doped Ni (Ni16-xVx)

  • Kim, Bong-Jae;Choi, Hong-Chul;Kim, Kyoo;Min, B.I.
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.128-131
    • /
    • 2008
  • We have investigated the electronic structures and magnetic properties of both undoped and doped bcc Ni using the full-potential linearized augmented plane wave (FLAPW) band method. A ferromagnetic ground state is obtained at the equilibrium volume of bcc Ni. When the system is under strain, the nonmagnetic ground state is stabilized. When the Ni is doped with V, the $Ni_{16-x}V_x$ material loses its magnetic properties when x > 2. We have also discussed the possible superconducting properties of $Ni_{16-x}V_x$.

Electronic Structure and Magnetism of Alloying Elements Substituted B2 FeAl Intermetallic Compounds: A Density Functional Study

  • Yun, Won Seok;Lee, Jee Yong;Kim, In Gee
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.11a
    • /
    • pp.130-131
    • /
    • 2012
  • In this study, the thermodynamic and magnetic properties of alloying element substituted B2 FeAl systems have been investigated using the all-electron FLAPW method based on the GGA. It was shown that the important changes take place in the structural properties as well as in the magnetism when alloying element is substituted by Fe or Al site in B2 FeAl. Detailed discussion on the thermodynamic and magnetic properties and electronic structure of these intermetallic compounds will be given.

  • PDF

Magnetic Properties of Ordered L12 FePt3: A First Principles Study

  • Kim, Dong-Yoo;Hong, Ji-Sang
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.197-200
    • /
    • 2011
  • Using the full potential linearized augmented plane wave (FLAPW) method, the influences of uniform and tetragonal strains on the magnetic state have been explored for chemically ordered bulk $L1_2$ $FePt_3$. The ordered state displays antiferromagnetic $Q_1$ (AFM-$Q_1$) state but it transitions into antiferromagnetic $Q_2$ (AFM-$Q_2$) state at about 10% uniform strain. The ferromagnetic (FM) state is observed at 11% uniform strain. For tetragonal strain, it is also seen that the transition from AFM-$Q_1$ to AFM-$Q_2$ depends on the strength and direction of the applied strain. The FM state does not appear in this case. Magnetocrystalline anisotropy (MCA) calculations for tetragonal distortion reveal that the spin reorientation transition occurs. In addition, we find that the direction of magnetization and the magnitude of magnetic anisotropy energy strongly depend on the c/a ratio.

Surface and Interface Magnetism in CoTi/FeTi/CoTi(110)

  • Lee G.H.;Jin Y. J.;Lee J. I.;Hong S.C.
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2005
  • We investigated the electronic structures and the magnetic properties of Ti-based intermetallic system of CoTi/FeTi/CoTi(110) surface and interface by using the all-electron full potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA). The calculated magnetic moments of interface Co and Fe atoms are 0.65 and 0.15 μ/sub B/, respectively. Surface and interface magnetism of CoTi/FeTi/CoTi(110) are discussed using the calculated density of states (DOS) and the spin densities.

Fundamental magnetic and elastic properties of Fe-Si alloys: A first-principles study

  • Yun, Won-Seok;Lee, Jee-Yong;Kim, In-Gee;Hong, Soon-Cheol;Lee, Jae-Il
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.39-40
    • /
    • 2011
  • In this study, the magnetism and the elastic properties of Fe-Si alloys have been investigated using the all-electron FLAPW method based on the GGA. The local magnetic moment of Fe atoms decreases gradually. From the Pugh's relation and $C_P$, in the ordered $D0_3$ $Fe_3Si$, we predict that it presents intrinsic ductility.

  • PDF

A First-principles Calculation of Surface Magnetism of Half-monolayer Ru on Pd(001)

  • Kim, Dong-Chul;Lee, J.I;Jang, Y.R
    • Journal of Magnetics
    • /
    • v.4 no.4
    • /
    • pp.107-110
    • /
    • 1999
  • In order to investigate the magnetism of Ru submonolayer on Pb(001), we have performed first-principles calculations for half-layer of Ru on Pd(001) using the full-potential linearzed augmented plane wave (FLAPW) method. We have found that the magnetic moment of Ru for 0.5 layer is 2.21 B. It is found that substrate Pd layers are polarized by the 0.5 Ru overlayer to have significant magnetic moments. Our results are compared with those obtained by the anomalous Hall effect. The calculated electronic structures, i,e., the spin densities and density of states are presented and discussed in relation with magnetic properties.

  • PDF

Fundamental Properties of MxP (M = Ti, V, Fe: x = 2, 3) Binary and Ternary Compounds

  • Yun, Won-Seok;Lee, Jee-Yong;Kim, In-Gee
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.05a
    • /
    • pp.36-37
    • /
    • 2012
  • In this study, the fundamental properties of $M_xP$ (M = Ti, V, Fe; x = 2, 3) binary compounds were investigated in terms of the FLAPW method within GGA. The calculated lattice parameters are well consistent with experimental values. Among considered systems, only the FM state of $Fe_xP$ compounds found to be more stable compared to the NM one. Discussion on the fundamental properties of $M_xP$ ternary compounds also will be given.

  • PDF

The Electronic Structure Calculations for Hexagonal Multiferroic Materials (다중강전자 상태를 가진 육방정계물질의 전자구조 계산)

  • Park, Key-Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.152-155
    • /
    • 2007
  • We have studied electronic structures and magnetic properties of $YMnO_3,\;ScManO_3$ with hexagonal structure using Full Potential Linearized Augmented Plane Wave (FLAPW) method based on LSDA method. LSDA calculation results show that multiferroic $YMnO_3$ shows energy gap due to hexagonal symmetry and magnetic interaction. Because of insulating gap and small Y ion, $YMnO_3$ shows magnetic and ferroelectric state. However, $ScMnO_3$ does not show the energy gap because of strong hybridization of Mn-O for LSDA calculation. We confirmed the stability of multiferroic state for $YMnO_3\;and\;ScManO_3$ using total energy calculations. The antiferromagnetic and ferroelectric states have the lowest energy about 100 meV.

First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride (Gd 도핑된 비스무스 텔루라이드의 자기적 성질에 대한 제일원리 계산 연구)

  • Van Quang, Tran;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Determination of the structural, electronic, and magnetic properties of the magnetically doped bismuth-telluride alloys are drawing lots of interest in the fields of the thermoelectric application as well as the research on magnetic interaction and topological insulator. In this study, we performed the first-principles electronic structure calculations within the density functional theory for the Gd doped bismuth-tellurides in order to study its magnetic properties and magnetic phase stability. All-electron FLAPW (full-potential linearized augmented plane-wave) method is employed and the exchange correlation potentials of electrons are treated within the generalized gradient approximation. In order to describe the localized f-electrons of Gd properly, the Hubbard +U term and the spin-orbit coupling of the valence electrons are included in the second variational way. The results show that while the Gd bulk prefers a ferromagnetic phase, the total energy differences between the ferromagnetic and the antiferromagnetic phases of the Gd doped bismuth-telluride alloys are about ~1meV/Gd, indicating that the stable magnetic phase may be changed sensitively depending on the structural change such as defects or strains.

Magnetocrystalline Anisotropy of α''-Fe16N2 (α''-Fe16N2의 자기결정이방성)

  • Khan, Imran;Son, Jicheol;Hong, Jisang
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.115-118
    • /
    • 2016
  • We investigated the magnetocrystalline anisotropy of pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ by using full-potential linearized augmented plane wave method (FLAPW). A very high magnetic moment was obtained for Fe (4d) site due to the lattice expansion in the z-direction, while the magnetic moment of Fe (4e) and (8h) site were suppressed due to hybridization with neighboring N atom. The calculated spin magnetic moments for different Fe sites (4d, 4e and 8h) were in good agreement with previously reported values. Due to the tetragonal distortion, we found a very large uniaxial anisotropy constant of $0.58MJ/m^3$. Besides, a high value of magnetization of 1.76MA/m was obtained. In additon, the estimated coercive field and maximum energy product of 6.51 kOe and 71.7 MGOe were obtained for pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$. This may suggest that the ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ can be utilized for potential rare-earth free permanent magnet material.