• Title/Summary/Keyword: FLAIR image

Search Result 33, Processing Time 0.025 seconds

Associated Brain Parenchymal Abnormalities in Developmental Venous Anomalies: Evaluation with Susceptibility-weighted MR Imaging

  • Ryu, Hyeon Gyu;Choi, Dae Seob;Cho, Soo Bueum;Shin, Hwa Seon;Choi, Ho Cheol;Jeong, Boseul;Seo, Hyemin;Cho, Jae Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.146-152
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the associated brain parenchymal abnormalities of developmental venous anomalies (DVA) with susceptibility-weighted image (SWI). Materials and Methods: Between January 2012 and June 2013, 2356 patients underwent brain MR examinations with contrast enhancement. We retrospectively reviewed their MR examinations and data were collected as per the following criteria: incidence, locations, and associated parenchymal signal abnormalities of DVAs on T2-weighted image, fluid-attenuated inversion recovery (FLAIR), and SWI. Contrast enhanced T1-weighted image was used to diagnose DVA. Results: Of the 2356 patients examined, 57 DVAs were detected in 57 patients (2.4%); 47 (82.4%) were in either lobe of the supratentorial brain, 9 (15.7%) were in the cerebellum, and 1 (1.7%) was in the pons. Of the 57 DVAs identified, 20 (35.1%) had associated parenchymal abnormalities in the drainage area. Among the 20 DVAs which had associated parenchymal abnormalities, 13 showed hemorrhagic foci on SWI, and 7 demonstrated only increased parenchymal signal abnormalities on T2-weighted and FLAIR images. In 5 of the 13 patients (38.5%) who had hemorrhagic foci, the hemorrhagic lesions were demonstrated only on SWI. Conclusion: The overall incidence of DVAs was 2.4%. Parenchymal abnormalities were associated with DVAs in 35.1% of the cases. On SWI, hemorrhage was detected in 22.8% of DVAs. Thus, we conclude that SWI might give a potential for understanding of the pathophysiology of parenchymal abnormalities in DVAs.

Early Diagnosis of Aseptic Meningitis in Ramsay Hunt Syndrome on 10-Minute Delayed CE 3D FLAIR Image: a Case Report

  • Kang, Mi Hyun;Kim, Da Mi;Lee, In Ho;Song, Chang June
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.197-200
    • /
    • 2021
  • Ramsay Hunt syndrome (RHS) is a disease caused by varicella-zoster virus (VZV) infection that can be diagnosed through clinical symptoms with or without imaging evaluations. The typical features of RHS on imaging evaluation include signal changes and enhancement in the internal auditory canal (IAC) nerves, and the labyrinthine segment of cranial nerve VII (CN VII) and cranial nerve VIII (CN VIII). In some patients, inner ear structure (cochlear and vestibular apparatus) is involved in RHS. Neurologic complications, such as encephalitis and meningitis, are rare in RHS, but are known to occur. Therefore, magnetic resonance imaging (MRI) is necessary to detect both abnormal signal intensity in the IAC, CN VII, CN VIII, inner and ear structure, and CNS complications. We report an RHS patient with CN VII, VIII, and leptomeningeal enhancement within the cerebellar folia on 10-min delayed, contrast-enhanced (CE), three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) imaging.

Comparative Analysis of Signal Intensity and Apparent Diffusion Coefficient at Varying b-values in the Brain : Diffusion Weighted-Echo Planar Image ($T_2^*$ and FLAIR) Sequence (뇌의 확산강조 영상에서 b-value의 변화에 따른 신호강도, 현성확산계수에 관한 비교 분석 : 확산강조 에코평면영상($T_2^*$ 및 FLAIR)기법 중심으로)

  • Oh, Jong-Kap;Im, Jung-Yeol
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.313-323
    • /
    • 2009
  • Diffusion-weighted imaging (DWI) has been demonstrated to be a practical method for the diagnosis of various brain diseases such as acute infarction, brain tumor, and white matter disease. In this study, we used two techniques to examine the average signal intensity (SI) and apparent diffusion coefficient (ADC) of the brains of patients who ranged in age from 10 to 60 years. Our results indicated that the average SI was the highest in amygdala (as derived from DWI), whereas that in the cerebrospinal fluid was the lowest. The average ADC was the highest in the cerebrospinal fluid, whereas the lowest measurement was derived from the pons. The average SI and ADC were higher in $T_2^*$-DW-EPI than in FLAIR-DW-EPI. The higher the b-value, the smaller the average difference in both imaging techniques; the lower the b-value, the greater the average difference. Also, comparative analysis of the brains of patients who had experienced cerebral infarction showed no distinct lesion in the general MR image over time. However, there was a high SI in apparent weighted images. Analysis of other brain diseases (e.g., bleeding, acute, subacute, chronic infarction) indicated SI variance in accordance with characteristics of the two techniques. The higher the SI, the lower the ADC. Taken together, the value of SI and ADC in accordance with frequently occurring areas and various brain disease varies based on the b-value and imaging technique. Because they provide additional useful information in the diagnosis and treatment of patients with various brain diseases through signal recognition, the proper imaging technique and b-value are important for the detection and interpretation of subacute stroke and other brain diseases.

  • PDF

Comparison of the SNR in the MR images on dental implant material (치아 임플란트 재료에 따른 자기공명영상의 SNR 비교)

  • Kim, Dong-Hyun;Ko, Seong-Jin;Ye, Soo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.149-155
    • /
    • 2015
  • Tooth implant is located in oral cavity and affects neck, skull base, and facail image. These magnetic inhomogeneities are usually frequency encoding direction which cause artifacts due to change of signal strength and geometric distortion. First, to evaluate signal to noise ratio (SNR) of magnetic resonance image caused by tooth implant this study uses meat phantom which is similar to human body and is consisted with fat, muscle, and water to measure signal to noise ratio. Second, signal to noise ratio by using custom-made fixed phantom is measured, and then signal to noise ratio size of different tooth implant types is compared and analyzed. The measured signal to noise ratio values of Brushite, HSA, Metal, and RBM for meat phantom were 2.76, 2.22, 1.88, and 1.57 on T1 SE, 1.88, 1.78, 1.65, and 1.79 on T2 FLAIR, 2.28, 2.25, 2.88, and 2.05 on T2 FSE, and 2.74, 1.94, 1.67, and 1.48 on T2 GRE. The measured signal to noise ratio values of Brushite, HSA, Metal, and RBM for fixed water phantom were 1.2, 1.06, 1.12, and 1.22 on DWI, 1.93, 1.87, 1.93, and 2.06 T1 SE, 1.83, 1.76, 1.82, and 1.92 on T2 FLAIR, 1.85, 1.79, 7.86, and 1.97 on T2 FSE, and 1.97, 1.93, 1.99, and 2.06 on T2 GRE. By considering through the results, patients and dentists need to consider some impacts from testing many aspects although their main purpose of having tooth implants is a dental restoration. Moreover, depending on the tooth implant characteristics of individual patients this study results can be used as baseline data when choosing test protocol.

Recurrent Painful Ophthalmoplegic Neuropathy: a Case Report

  • Park, Jae Hwi;Lee, Ho Kyu;Koh, Myeong Ju;Oh, Jung Hwan;Park, Sung Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.2
    • /
    • pp.172-174
    • /
    • 2019
  • Upon review, it is noted that recurrent painful ophthalmoplegic neuropathy (RPON) is a rare neurological syndrome characterized by recurrent unilateral headaches and painful ophthalmoplegia of the ipsilateral oculomotor nerve. As seen on brain MRI, thickening and enhancement of the oculomotor cranial nerve can be observed in these cases. We experienced a case of RPON in an adult patient who showed thickening and enhancement of the oculomotor nerve on gadolinium-enhanced 3D-FLAIR image. The authors report a case of RPON with a review of the literature.

Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches

  • Al Shehri, Waleed;Jannah, Najlaa
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.343-351
    • /
    • 2022
  • A brain tumor forms when some tissue becomes old or damaged but does not die when it must, preventing new tissue from being born. Manually finding such masses in the brain by analyzing MRI images is challenging and time-consuming for experts. In this study, our main objective is to detect the brain's tumorous part, allowing rapid diagnosis to treat the primary disease instantly. With image processing techniques and deep learning prediction algorithms, our research makes a system capable of finding a tumor in MRI images of a brain automatically and accurately. Our tumor segmentation adopts the U-Net deep learning segmentation on the standard MICCAI BRATS 2018 dataset, which has MRI images with different modalities. The proposed approach was evaluated and achieved Dice Coefficients of 0.9795, 0.9855, 0.9793, and 0.9950 across several test datasets. These results show that the proposed system achieves excellent segmentation of tumors in MRIs using deep learning techniques such as the U-Net algorithm.

Expression of Cartoon Rendering Method in Image Contents (영상 콘텐츠에서 카툰 렌더링기법의 활용)

  • Kim, Jong-Seo;Kwak, Hoon-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.8
    • /
    • pp.142-151
    • /
    • 2007
  • The rapid development of 3D computer graphics makes traditional cell-animations expressed by several digital techniques and makes traditional cell-animations expand their own area through several continuous tries. There are two types in rendering method. The one is Photorealistic rendering to realize accurate images like photos and the other is Non-photorealistic rendering to realize human's flair and artistry. This paper examines applications of cartoon rendering techniques among several Non-photorealistic rendering techniques. This paper analyzes production cases and examines features of cartoon rendering techniques in the latest movies, games and advertisements of image contents. And this paper will be able to help making more sensual, familiar and in-depth products, as understanding applications, merits and demerits of the latest cartoon rendering techniques through these investigations.

Intracranial Plasma Cell Granuloma

  • Kim, Dae-Jin;Choi, Yu-Seok;Song, Young-Jin;Kim, Ki-Uk
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.2
    • /
    • pp.161-164
    • /
    • 2009
  • Plasma cell granuloma is a tumor-like disease characterized by non-neoplastic polyclonal proliferation of plasma cells and other mononuclear cells. This disease occurs most frequently in the lung and upper respiratory tract, while the involvement of the central nervous system is very rare. A 44-year-old female patient presented with nausea and progressive visual disturbance. Brain magnetic resonance imaging (MRI) revealed the mass along the right tentorium with low signal intensity in the T2 weighted image (T2WI) and fluid-attenuated inversion recovery (FLAIR) sequence, and an isosignal intensity in T1 weighted image (T1WI), the latter of which was enhanced after administration of gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA). The thickest portion of the tentorium was partially excised via the combined suboccipital and infratentorial approach. The histopathological examination indicated a diagnosis of plasma cell granuloma. Postoperative steroid therapy was administered for remnant tumor control. Although a follow up MRI scan taken 20 months after the operation showed a slight decrease in tumor size, the lesion had extended to the falx and left frontal convexity along with parenchymal edema at 32 months after the operation and the clinical status was aggravated. The mass was removed from the left frontal convexity. Radiation therapy was given, together with steroid administration.

Traumatic Brainstem Hemorrhage Presenting with Hemiparesis

  • Se, Young-Bem;Kim, Choong-Hyun;Bak, Koang-Hum;Kim, Jae-Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.3
    • /
    • pp.176-178
    • /
    • 2009
  • Traumatic brainstem hemorrhage after blunt head injury is an uncommon event. The most frequent site of hemorrhage is the midline rostral brainstem. The prognosis of these patients is poor because of its critical location. We experienced a case of traumatic brainstem hemorrhage. A 41-year-old male was presented with drowsy mentality and right hemiparesis after blunt head injury. Plain skull radiographs and brain computerized tomography scans revealed a depressed skull fracture, epidural hematoma, and hemorrhagic contusion in the right parieto-occipital region. But, these findings did not explain the right hemiparesis. T2-weighted magnetic resonance (MR) image of the cervical spine demonstrated a focal hyperintense lesion in the left pontomedullary junction. Brain diffusion-weighted and FLAIR MR images showed a focal hyperintensity in the ventral pontomedullary lesion and it was more prominent in the left side. His mentality and weakness were progressively improved with conservative treatment. We should keep in mind the possibility of brainstem hemorrhage if supratentorial lesions or spinal cord lesions that caused neurological deficits in the head injured patients are unexplainable.

Findings Regarding an Intracranial Hemorrhage on the Phase Image of a Susceptibility-Weighted Image (SWI), According to the Stage, Location, and Size

  • Lee, Yoon Jung;Lee, Song;Jang, Jinhee;Choi, Hyun Seok;Jung, So Lyung;Ahn, Kook-Jin;Kim, Bum-soo;Lee, Kang Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.107-113
    • /
    • 2015
  • Purpose: Susceptibility weighted imaging (SWI) is a new magnetic resonance technique that can exploit the magnetic susceptibility differences of various tissues. Intracranial hemorrhage (ICH) looks a dark blooming on the magnitude images of SWI. However, the pattern of ICH on phase images is not well known. The purpose of this study is to characterize hemorrhagic lesions on the phase images of SWI. Materials and Methods: We retrospectively enrolled patients with ICH, who underwent both SWI and precontrast CT, between 2012 and 2013 (n = 95). An SWI was taken, using the 3-tesla system. A phase map was generated after postprocessing. Cases with an intracranial hemorrhage were reviewed by an experienced neuroradiologist and a trainee radiologist, with 10 years and 3 years of experience, respectively. The types and stages of the hemorrhages were determined in correlation with the precontrast CT, the T1- and T2-weighted images, and the FLAIR images. The size of the hemorrhage was measured by a one- directional axis on a magnitude image of SWI. The phase values of the ICH were qualitatively evaluated: hypo-, iso-, and hyper-intensity. We summarized the imaging features of the intracranial hemorrhage on the phase map of the SWI. Results: Four types of hemorrhage are observed: subdural and epidural; subarachnoid; parenchymal hemorrhage; and microbleed. The stages of the ICH were classified into 4 groups: acute (n = 34); early subacute (n = 11); late subacute (n = 15); chronic (n = 8); stage-unknown microbleeds (n = 27). The acute and early subacute hemorrhage showed heterogeneous mixed hyper-, iso-, and hypo-signal intensity; the late subacute hemorrhage showed homogeneous hyper-intensity, and the chronic hemorrhage showed a shrunken iso-signal intensity with the hyper-signal rim. All acute subarachnoid hemorrhages showed a homogeneous hyper-signal intensity. All parenchymal hemorrhages (> 3 mm) showed a dipole artifact on the phase images; however, microbleeds of less than 3 mm showed no dipole artifact. Larger hematomas showed a heterogeneous mixture of hyper-, iso-, and hypo-signal intensities. Conclusion: The pattern of the phase value of the SWI showed difference, according to the type, stage, and size.