• Title/Summary/Keyword: FLAC

Search Result 326, Processing Time 0.027 seconds

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

The Analysis of Tunnel Excavation using Finite Difference Method (유한 차분법을 이용한 터널 단면 해석)

  • 김동후;유건선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.166-178
    • /
    • 1991
  • Using FLAC, which is an explicit finite difference code written for analysis of problems in geotechnical engineering, a particular example 2 in the Korean Geothechnical Society News has been analysed. The elastoplasticity formulation in FLAC assumes an elastic, perfectly plastic solid in plane strain which conforms to a Mohr-Coulomb yield condition. During tunnel excavations by stages, stresses and diaplacements in region around the tunnel varies according to distance from the face of tunnel and installation of tunnel supports, and soon. In this analysis, the three dimensional support effect of the rock mass during the process of excavation is simulated by using the stress distribution method, and varying the material constants of shotcrete in each stage also considered. The maximum convergency is occured at the crown of the tunnel and estimated to be about 12mm.

  • PDF

A Study on a Self-supported Earth Retaining Wall with Stabilizing Piles (억지말뚝을 이용한 자립식 흙막이 공법의 개발)

  • Sim, Jae-Uk;Back, Sung-Kwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1461-1467
    • /
    • 2005
  • In this study, a new earth retention system has been developed and introduced. This system is a self-supported earth retaining wall without struts. The new earth retention system consists of connected double H-pile and wale. This system provides a larger spacing of support, economical benefit, construction easiness, good performance and safety. This paper explains basic principles and mechanism of self-supported earth retaining wall. In order to investigate applicability and safety of this system, numerical analysis was performed. The finite differential method program, FLAC3D is used. The predicted performances of this system were presented and discussed.

  • PDF

도시 폐기물 매립지반의 내진해석

  • 최진욱;장연수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.281-285
    • /
    • 2004
  • 폐기물 매립시설물은 지진에 의해 파괴될 경우 시설물 파괴로부터 인명 및 경제적인 피해와 더불어 복구하기 어려운 환경적인 문제가 발생한다. 따라서 지진시 지반 및 구조물의 거동을 정확히 예측하기 위한 신뢰성 있는 지반 가속도의 증폭현상 평가가 필요하다. 본 연구에서는 1차원 지반응답특성 평가 프로그램인 SHAKE91과 유한차분 프로그램인 FLAC을 이용 하여 폐기물 매립지에서의 지진거동 특성을 분석하였다. 1차원 해석결과 연약층이 존재하는 곳에서 지반변형이 많이 이루어졌고, FLAC 해석결과 폐기물층 사면부에서 뚜렷한 변위벡터가 발생하였으나 내진 2등급 매립지의 허용변위 30cm 이내이므로 해석 대상 구조물은 안전함을 알 수 있었다.

  • PDF

Three-Dimensional Modelling and Sensitivity Analysis for the Stability Assessment of Deep Underground Repository

  • Kwon, S.;Park, J.H.;Park, J.W.;Kang, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.605-618
    • /
    • 2001
  • For the mechanical stability assessment of a deep underground high-level waste repository. computer simulations using FLAC3D were carried out and important parameters including stress ratio, depth, tunnel size, joint spacing, and joint properties were chosen from sensitivity analysis. The main effect as well as the interaction effect between the important parameters could be investigated effectively using fractional factorial design . In order to analyze the stability of the disposal tunnel and deposition hole in a discontinuous rock mass, different modelings were performed under different conditions using 3DEC and the influence of joint distribution and properties, rock properties and stress ratio could be determined. From the three dimensional modelings, it was concluded that the conceptual repository design was mechanically stable even in a discontinuous rock mass.

  • PDF