• Title/Summary/Keyword: FLAC

Search Result 322, Processing Time 0.021 seconds

A Parametric Study to Estimate the Behavior of a Piled Raft Foundation Influenced by Ground Conditions (지반조건이 Piled Raft 기초의 거동에 미치는 영향 평가를 위한 매개변수 연구)

  • You, Kwang-Ho;Jung, Yeun-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.35-46
    • /
    • 2016
  • In this study, a sensitivity analysis was carried out by using numerical analysis under the consideration that it is difficult to analyze the behavior of real piled raft foundations on different ground conditions through a real scale test. The program used for numerical analysis is FLAC 3D based on the finite difference method. Piles were modelled by using pile element that is one of the structure elements of FLAC 3D and the ground and raft were modelled by using continuum element. With a fixed pile arrangement of $3{\times}3$, the diameter, length, space of piles, and ground conditions were selected as sensitivity parameters and their mutual correlation were investigated. As a result, the bigger and longer pile diameter, length and pile space are, the bigger the bearing capacity of the piled raft becomes. When pile space exceeded a specific value, however, the piled raft foundation behaved like a shallow foundation supported by only a raft. Also it can be confirmed that the better ground conditions are, the more total bearing capacity of the piled raft foundation increases.

Coupled Effect of Soil Nail/Slope Systems (쏘일네일-사면의 상호작용 효과)

  • Jeong Sang Seom;Lee Jin Hyung;Lee Sun Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.127-135
    • /
    • 2005
  • In this paper, a numerical comparison of predictions by limit equilibrium analysis and finite difference analysis is presented for slope/soil-nail system. Special attention is given to the coupled analysis based on the explicit-finite-difference code, FLAC 2D. To this end, an internal routine (FISH) was developed to calculate a factor of safety for a soil nail slope according to shear strength reduction method. The case of coupled analyses was performed for soil nails in slope in which the soil nails response and slope stability are considered simultaneously. In this study, by using these methods, the failure surfaces and factors of safety were compared and analyzed in several cases, such as toe, middle and top of the slope, respectively. Furthermore, the coupled method based on shear strength reduction method was verified by the comparison with other analysis results.

Three-dimensional Stability Analysis for an Underground Disposal Research Tunnel (지하처분연구시설에 대한 3차원 터널 안정성 해석)

  • 권상기;조원진
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.188-202
    • /
    • 2004
  • If an underground research facility for the validation of disposal concept is constructed in KAERI, it is expected to have a thick weathered zone and varying surface topology. In this study, the influence of different geological conditions, tunnel slope, tunnel size, and sequential excavation is investigated by 3D mechanical analysis using FLAC3D. Around the tunnel, it is not expected to develop any plastic zone and the maximum stress might be as high as 5 ㎫. The maximum compressive stress will be developed at about 20 m to e dead end of the tunnel. There is no difference on stress and displacement distributions between the cases with and without sequential excavation. It is expected to have stress release in the roof and floor after the excavation of the tunnel. There is no significant influence of weathered zone size, tunnel size, and tunnel slope on the stress and displacement distributions. The modeling for the intersection shows the minimum factor of safety is above 3, when the in situ stress ratio K is 3. From the study, it was possible to demonstrate that the small scale disposal research tunnel in KAERI will be mechanically stable.

Settlement of Fine Recycled-concrete Aggregates Foundation under Sewage Conduit System (폐콘크리트 재생잔골재의 하수관거 모래기초 적용에 따른 침하 거동)

  • Oh, Je-Ill;Ahn, Nam-Kyu;Lee, Ju-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.486-490
    • /
    • 2005
  • Fine recycled-concrete aggregates(RCAs) instead of natural sand were tested for a foundation material under sewage conduit system, which was evaluated based on foundation settlement at various conditions. To obtain this applicability of RCAs, the settlement behavior was simulated with FLAC program based on the difference of material properties, and immediate settlement behaviors and the change of material properties under the simulated drainage conditions also tested at the various loading conditions in the laboratory. Finally, large-scale settlement test in the field was conducted to prove the above feasibilities. Subsequently, the amount of settlement from the FLAC simulation was calculated under $5.0{\times}10^{-6}\;m$ and the extent of settlement and property changes (porosity, permeability and waster absorption) was not noticeable from the laboratory experiments. Also, settlement monitoring from the field experiment showed the consistent results with laboratory experiments except for the consolidation settlement(=5 mm) of the round below the foundation. In summary, adopting fine RCAs as a foundation material for sewage conduit system was resonable based of geotechnical point of view.

Coupled Hydrological-mechanical Behavior Induced by CO2 Injection into the Saline Aquifer of CO2CRC Otway Project (호주 오트웨이 프로젝트 염수층 내 CO2 주입에 따른 수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Shinn, Young Jae;Rutqvist, Jonny;Cheon, Dae-Sung;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.166-180
    • /
    • 2016
  • The present study numerically simulated the CO2 injection into the saline aquifer of CO2CRC Otway pilot project and the resulting hydrological-mechanical coupled process in the storage site by TOUGH-FLAC simulator. A three-dimensional numerical model was generated using the stochastic geological model which was established based on well log and core data. It was estimated that the CO2 injection of 30,000t over a period of 200 days increased the pressure near the injection point by 0.5 MPa at the most. The pressure increased rapidly and tended to approach a certain value at an early stage of the injection. The hydrological and mechanical behavior observed from the CO2 flow, effective stress change and stress-strength ratio revealed that the CO2 injection into the saline aquifer under the given condition would not have significant effects on the mechanical safety of the storage site and the hydrological state around the adjacent fault.

An elasto-plastic damage constitutive model for jointed rock mass with an application

  • Wang, Hanpeng;Li, Yong;Li, Shucai;Zhang, Qingsong;Liu, Jian
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.77-94
    • /
    • 2016
  • A forked tunnel, as a special complicated underground structure, is composed of big-arch tunnel, multi-arch tunnel, neighborhood tunnels and separate tunnels according to the different distances between two separate tunnels. Due to the complicated process of design and construction, surrounding jointed rock mass stability of the big-arch tunnel which belongs to the forked tunnel during excavation is a hot issue that needs special attentions. In this paper, an elasto-plastic damage constitutive model for jointed rock mass is proposed based on the coupling method considering elasto-plastic and damage theories, and the irreversible thermodynamics theory. Based on this elasto-plastic damage constitutive model, a three dimensional elasto-plastic damage finite element code (D-FEM) is implemented using Visual Fortran language, which can numerically simulate the whole excavation process of underground project and perform the structural stability of the surrounding rock mass. Comparing with a popular commercial computer code, three dimensional fast Lagrangian analysis of continua (FLAC3D), this D-FEM has advantages in terms of rapid computing process, element grouping function and providing more material models. After that, FLAC3D and D-FEM are simultaneously used to perform the structural stability analysis of the surrounding rock mass in the forked tunnel considering three different computing schemes. The final numerical results behave almost consistent using both FLAC3D and D-FEM. But from the point of numerically obtained damage softening areas, the numerical results obtained by D-FEM more closely approach the practical behaviors of in-situ surrounding rock mass.

A comparative study on the numerical analysis program by SSI analysis of a high-rise building and an adjacent underground structure (초고층 건물과 인접지하구조물의 SSI 해석을 통한 수치해석 프로그램 비교 연구)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.211-225
    • /
    • 2019
  • Recently, earthquakes have occurred throughout the entire region of Korea and seismic analysis studies have been actively conducted in various fields. SSI analyses studies considering ground have been carried out consistently. However, few comparative analyses have been performed on the dynamic behavior of buildings according to numerical analysis method in the case of the previous dynamic analyses considering grounds. Therefore, in this study, the dynamic analyses were performed on a high-rise building by using both a finite element program MIDAS GTS NX and a finite difference program FLAC 2D. The results were compared and analyzed each other. As a result, both the maximum compressive and tensile bending stresses of above ground and below ground part were estimated to be a little larger by MIDAS GTS NX than by FLAC 2D. However, the maximum horizontal displacement value, the horizontal displacement distribution, and the position of weak part were turned out to be similar in both analysis programs. Therefore, it can be concluded that there is no difference in using either a finite element program or a finite difference program for the convenience of a user for a dynamic analysis.

The Behavior of Shallow Foundation under Eccentric Loads by Centrifuge Model Experiment (원심모형시험에 의한 편심하중을 받는 얕은기초의 거동)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.229-240
    • /
    • 2002
  • This paper is an experimental and numerical work of Investigating the bearing capacity of shallow foundation of rubble mound under eccentric loads. Parametric centrifuge model tests at the 50g level environments with the model footings in the form of strip footing were performed by changing the loading location of model footing, relative density and materials for ground foundation. For the model ground, crushed rock sampled from a rocky mountain was prepared with a grain size distribution of having an identical coefficient of uniformity to the field condition. Model ground was also prepared with relative densities of 50 % and 80 %. For loading condition, model tests with and without eccentric load were carned out to investigate the effect of eccentric loads and a numerical analysis with the commertially available software of FLAC was performed. For numerical estimation with FLAC, the hyperbolic model of a nonlinear elastic constitutive relationship was used to simulate the stress-stram constitutive relationship of model ground and a series of triaxial compression test were carried out to find the parameters for this model Test results were analyzed and compared with Meyerhof method (1963), effective area method based on the limit equilibrium method, and a numerical analysis with FLAC.

  • PDF

A Numerical Analysis to Predict the Temperature Distribution around a Cold Storage Cavern (지하암반 냉동저장고 주변의 온도분포 예측을 위한 수치해석)

  • 이규상;이정인
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.287-294
    • /
    • 2004
  • To predict the temperature distribution around a underground rock storage cavern, two- and three- dimensional numerical analysis using FLAC was conducted. The effects of groundwater and latent heat on thermal properties were considered in numerical calculation. The temperature estimated by FLAC are compared with the temperature measured for 5-year operation at Gonjiam storage cavern. Estimated and measured temperatures showed great discrepancy when thermal properties from laboratory tests were used and showed good agreement when the effects from 20% of volumetric water fraction and latent heat were considered. However, the discrepancy still increased with operation time due to the heat flow from ground surface. Three-dimensional numerical models were established to closely approximate the boundary condition of the test site, and numerical results better agreement when groundwater and latent heat effects were considered.

Effect of Rock Mass Properties on the Blast Vibration by Taguchi method (다꾸치법에 의한 암반물성의 발파진동 영향요소 분석)

  • 김남수;김보현;양형식
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.229-234
    • /
    • 2000
  • The propagation of blast vibration and the damping characteristics depend on both the mechanical properties of rock mass and weight charge. In this study, the characteristics of propagation and damping were analyzed by FLAC. The construction site was the second Kwang-ju circulating read. Taguchi method which is one of experimental design methods was used for determination of input data and parameter levels. The results showed that rock density was the most dominant of variables being concerned in this study, which affect the propagation of blast vibration.

  • PDF