• 제목/요약/키워드: FISPACT

검색결과 11건 처리시간 0.02초

A Comparative Study on Effective One-Group Cross-Sections of ORIGEN and FISPACT to Calculate Nuclide Inventory for Decommissioning Nuclear Power Plant

  • Cha, Gilyong;Kim, Soonyoung;Lee, Minhye;Kim, Minchul;Kim, Hyunmin
    • Journal of Radiation Protection and Research
    • /
    • 제47권2호
    • /
    • pp.99-106
    • /
    • 2022
  • Background: The radionuclide inventory calculation codes such as ORIGEN and FISPACT collapse neutron reaction libraries with energy spectra and generate an effective one-group cross-section. Since the nuclear cross-section data, energy group (g) structure, and other input details used by the two codes are different, there may be differences in each code's activation inventory calculation results. In this study, the calculation results of neutron-induced activation inventory using ORIGEN and FISPACT were compared and analyzed regarding radioactive waste classification and worker exposure during nuclear decommissioning. Materials and Methods: Two neutron spectra were used to obtain the comparison results: Watt fission spectrum and thermalized energy spectrum. The effective one-group cross-sections were generated for each type of energy group structure provided in ORIGEN and FISPACT. Then, the effective one-group cross-sections were analyzed by focusing on 59Ni, 63Ni, 94Nb, 60Co, 152Eu, and 154Eu, which are the main radionuclides of stainless steel, carbon steel, zircalloy, and concrete for decommissioning nuclear power plant (NPP). Results and Discussion: As a result of the analysis, 154Eu and 59Ni may be overestimated or underestimated depending on the code selection by up to 30%, because the cross-section library used for each code is different. When ORIGEN-44g, -49g, and -238g structures are selected, the differences of the calculation results of effective one-group cross-section according to group structure selection were less than 1% for the six nuclides applied in this study, and when FISPACT-69g, -172g, and -315g were applied, the difference was less than 1%, too. Conclusion: ORIGEN and FISPACT codes can be applied to activation calculations with their own built-in energy group structures for decommissioning NPP. Since the differences in calculation results may occur depending on the selection of codes and energy group structures, it is appropriate to properly select the energy group structure according to the accuracy required in the calculation and the characteristics of the problem.

의료용 선형가속기 차폐 재질로써 일반 콘크리트와 저 방사화 콘크리트 비교 (Comparison of General Concrete and Low-radiation Concrete as Shielding Materials for Medical Linear Accelerators)

  • 이동연;김정훈
    • 한국방사선학회논문지
    • /
    • 제13권1호
    • /
    • pp.45-53
    • /
    • 2019
  • 본 연구는 의료용 선형가속기 시설을 차폐하는 콘크리트에 대한 중성자 방사화 연구로써, 일반 콘크리트와 저 방사화 콘크리트를 비교 분석하였다. 실험 방법은 MCNPX (Ver. 2.5.0)와 FISPACT-2010를 사용하여 모의실험을 진행하여, 광자선과 중성자선에 대한 차폐능을 산정하고 중성자 방사화 평가를 진행하였다. 그 결과 차폐능은 일반 콘크리트에서 20~50 cm 효율적이였으며, 방사화 평가의 경우 저 방사화 콘크리트에서 방사능이 낮게 계산되었으나, 모두 자체처분허용 농도를 초과하지 않는 수준으로 산정되었다. 이를 종합적으로 분석한 결과 일반 콘크리트를 사용하는 것이 효율적인 것으로 판단된다.

Assessment of neutron-induced activation of irradiated samples in a research reactor

  • Ildiko Harsanyi;Andras Horvath;Zoltan Kis;Katalin Gmeling;Daria Jozwiak-Niedzwiedzka;Michal A. Glinicki;Laszlo Szentmiklosi
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1036-1044
    • /
    • 2023
  • The combination of MCNP6 and the FISPACT codes was used to predict inventories of radioisotopes produced by neutron exposure of a sample in a research reactor. The detailed MCNP6 model of the Budapest Research Reactor and the specific irradiation geometry of the NAA channel was established, while realistic material cards were specified based on concentrations measured by PGAA and NAA, considering the precursor elements of all significant radioisotopes. The energy- and spatial distributions of the neutron field calculated by MCNP6 were transferred to FISPACT, and the resulting activities were validated against those measured using neutron-irradiated small and bulky targets. This approach is general enough to handle different target materials, shapes, and irradiation conditions. A general agreement within 10% has been achieved. Moreover, the method can also be made applicable to predict the activation properties of the near-vessel concrete of existing nuclear installations or assist in the optimal construction of new nuclear power plant units.

Automated inventory and material science scoping calculations under fission and fusion conditions

  • Gilbert, Mark R.;Fleming, Michael;Sublet, Jean-Christophe
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1346-1353
    • /
    • 2017
  • The FISPACT-II inventory simulation platform is a modern computational tool with advanced and unique capabilities. It is sufficiently flexible and efficient to make it an ideal basis around which to perform extensive simulation studies to scope a variety of responses of many materials (elements) to several different neutron irradiation scenarios. This paper briefly presents the typical outputs from these scoping studies, which have been used to compile a suite of nuclear physics materials handbooks, providing a useful and vital resource for material selection and design studies. Several different global responses are extracted from these reports, allowing for comparisons between materials and between different irradiation conditions. A new graphical output format has been developed for the FISPACT-II platform to display these "global summaries"; results for different elements are shown in a periodic table layout, allowing side-by-side comparisons. Several examples of such plots are presented and discussed.

Design of proton-beam degrader for high-purity 89Zr production

  • Hyunjin Lee;Sangbong Lee;Daeseong Choi;Gyoseong Jeong;Hee Seo
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2683-2689
    • /
    • 2024
  • This work investigated the most suitable type of degrader (Cu, Al or Nb) and its thickness, taking into consideration the salient aspects of concrete activation for high-purity 89Zr production by 89Y(p,n)89Zr nuclear reaction. The MCNP and FISPACT codes were used to determine the optimal degrader thickness and the radioactivity of shielding concrete by neutron activation, respectively. The results showed that the optimal thickness of the beam degraders was 1.16, 3.19, and 1.33 mm for Cu, Al, and Nb, respectively. The neutron production rate per proton and the energy and angular distributions of neutrons varied depending on the type of degrader. Considering the radioactivity of the target-room concrete and the amount of radioactive waste expected to be generated, the use of a 1.33-mm-thick Nb degrader for 89Zr production was determined to be the best choice.

50 MeV 사이클로트론 조사 서비스로 인한 방사화 평가 (Evaluating Activation for 50 MeV Cyclotron Irradiation Service using Monte Carlo Method and Inventory Code)

  • 김상록;김기섭;허재승;안윤진
    • 한국방사선학회논문지
    • /
    • 제15권4호
    • /
    • pp.415-427
    • /
    • 2021
  • 한국원자력의학원에서는 50 MeV 사이클로트론의 빔 라인을 이용하여 연구자들에게 다양한 빔 조사 서비스를 수행하고 있다. 특히 중성자 빔 서비스는 양성자와 베릴륨의 핵반응을 이용하기 때문에 높은 전류를 사용하므로 조사 시료의 방사화 가능성이 높아진다. 본 연구에서는 연구자들이 선호하는 35 MeV 20 ㎂ 중성자 빔 서비스에 의해 발생 가능한 방사화에 대해 MCNP 6.2와 FISPACT-II 4.0을 이용해 평가했다. 평가결과 철, 구리, 텅스텐 시료는 1시간 이상 조사하는 경우 장반감기 핵종이 생성되는 방사화가 발생하여 자체처분농도를 초과했다. 매일 2시간 사용 조건에서 건축물에 대한 방사화는 발생하지 않았고 조사실 내부 공기의 방사화로 인한 종사자의 내부피폭은 매우 미비했고, 이 공기를 배기하는 경우 배출기준도 만족했다.

Shielding Evaluation and Activation Analysis of Facilities by Neutron Generator for the Development of 20 Feet Container Inspection System

  • Jin-Woo Lee;Dae-Sung Choi;Gyo-Seong Jeong
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.443-449
    • /
    • 2023
  • KAERI(Korea Atomic Energy Research Institute) is conducting research and development of large-scale radiation generators and the latest radiation measuring instruments. In particular, research and development of security screening equipment using an electron beam accelerator and a neutron generator is in progress recently. Globally, 20 ft containers are used to transport imports and exports, and electron beam accelerators are radiation sources to measure the shape of the material inside the container during customs inspections in each country. KAERI is developing a device that can use an electron beam accelerator and a neutron generator sequentially to grasp the shape of various materials as well as the location of the internal target material. In this study, when using the neutron generator, the radiation dose and the degree of activation by neutron for the facility and surrounding environment, facility equipment were simulated using MCNP and FISPACT code. As a result, the shielding structures inside and outside the radiation control area were satisfactory to the reference level established conservatively based on the Korean Nuclear Act.

경수로 구조재 내 불순물 조성 및 함량이 중성자 방사화 핵종 재고량에 미치는 영향 분석 (The Effects of Impurity Composition and Concentration in Reactor Structure Material on Neutron Activation Inventory in Pressurized Water Reactor)

  • 차길용;김순영;이재민;김용수
    • 방사성폐기물학회지
    • /
    • 제14권2호
    • /
    • pp.91-100
    • /
    • 2016
  • 경수로 원전을 대상으로 원전 내 방사화 대상 물질인 스테인리스강, 탄소강 및 콘크리트의 불순물 정보 적용여부에 따른 방사화 핵종 재고량을 계산하였다. 본 연구에서 탄소강은 압력용기 물질에 사용되었고, 스테인리스강은 압력용기 내부 물질에 사용되었으며, 일반 콘크리트가 생체 차폐체에 사용되었다. 금속 물질에 대해서는 참고자료 1개의 불순물 함량 정보를 적용하였고, 콘크리트 물질에서는 참고자료 5개의 불순물 함량 정보를 적용하여 평가를 수행하였다. 방사화 핵종 재고량 전산해석 시 중성자속 계산에는 MCNP 전산코드를, 방사화 계산에는 FISPACT 전산코드를 각각 사용하였다. 계산 결과, 금속 물질에서 불순물을 포함한 경우가 그렇지 않은 경우보다 비방사능이 2배 이상 높았으며, 특히 콘크리트에서는 불순물을 포함한 경우가 그렇지 않은 경우보다 최대 30배 이상 비방사능이 높게 계산되었다. 방사화 핵종의 생성반응과 재고량을 분석한 결과, 금속 구조물에서는 불순물 중 Co원소와 중성자에 의해 생성되는 방사화 핵종인 Co-60이, 콘크리트에서는 불순물 중 Co, Eu 원소와 중성자에 의해 생성되는 방사화 핵종인Co-60, Eu-152, Eu-154 이 방사성폐기물 준위 결정에 큰 영향을 미치고 있음을 확인하였다. 본 연구의 결과는 원전 해체 계획 수립 시 방사화 핵종 재고량 평가 및 규제에 활용될 수 있을 뿐 아니라, 해체를 고려한 원전 또는 원자력시설의 설계 단계에서도 참고자료로 활용 될 것으로 판단된다.

PRELIMINARY ESTIMATION OF ACTIVATED CORROSION PRODUCTS IN THE COOLANT SYSTEM OF FUSION DEMO REACTOR

  • Noh, Si-Wan;Lee, Jai-Ki;Shin, Chang-Ho;Kwon, Tae-Je;Kim, Jong-Kyung;Lee, Young-Seok
    • Journal of Radiation Protection and Research
    • /
    • 제37권2호
    • /
    • pp.63-69
    • /
    • 2012
  • The second phase of the national program for fusion energy development in Korea starts from 2012 for design and construction of the fusion DEMO reactor. Radiological assessment for the fusion reactor is one of the key tasks to assure its licensability and the starting point of the assessment is determination of the source terms. As the first effort, the activities of the coolant due to activated corrosion product (ACP) were estimated. Data and experiences from fission reactors were used, in part, in the calculations of the ACP concentrations because of lack of operating experience for fusion reactors. The MCNPX code was used to determine neutron spectra and intensities at the coolant locations and the FISPACT code was used to estimate the ACP activities in the coolant of the fusion DEMO reactor. The calculated specific activities of the most nuclides in the fusion DEMO reactor coolant were 2-15 times lower than those in the PWR coolant, but the specific activities of $^{57}Co$ and $^{57}Ni$ were expected to be much higher than in the PWR coolant. The preliminary results of this study can be used to figure out the approximate radiological conditions and to establish a tentative set of radiological design criteria for the systems carrying coolant in the design phase of the fusion DEMO reactor.