• Title/Summary/Keyword: FINITE ELEMENT MODEL

Search Result 7,978, Processing Time 0.036 seconds

A Mechanical Information Model of Line Heating Process using Artificial Neural Network (인공신경망을 이용한 선상가열 공정의 역학정보모델)

  • Park, Sung-Gun;Kim, Won-Don;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.122-129
    • /
    • 1997
  • Thermo-elastic-plastic analyses used in solving plate forming process are often computationally expensive. To obtain an optimal process of line heating typically requires numerous iterations between the simulation and a finite element analysis. This process often becomes prohibitive due to the amount of computer time required for numerical simulation of line heating process. Therefore, a new techniques that could significantly reduce the computer time required to solve a complex analysis problem would be beneficial. In this paper, we considered factors that influence the bending effect by line heating and developed inference engine by using the concept of artificial neural network. To verify the validity of the neural network, we used results obtained from numerical analysis. We trained the neural network with the data made from numerical analysis and experiments varying the structure of neural network, in other words varying the number of hidden layers and the number of neurons in each hidden layers. From that we concluded that if the number of neurons in each hidden layers is large enough neural network having two hidden layers can be trained easily and errors between exact value and results obtained from trained network are not so large. Consequently, if there are enough number of training pairs, artificial neural network can infer similar results. Based on the numerical results, we applied the artificial neural network technique to deal with mechanical behavior of line heating at simulation stage effectively.

  • PDF

Effects of the Remanent Magnetization on Detecting Signals in Magnetic Flux Leakage System (자기누설탐상시스템에서 배관의 잔류자화가 결함신호에 미치는 영향)

  • Seo, Kang;Jeong, Hyun-Won;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.325-331
    • /
    • 2005
  • The magnetic Hut leakage (MFL) type nondestructive testing (NDT) method is widely used to detect corrosion and defects, mechanical deformation of the underground gas pipelines. The object pipeline is magnetically saturated by the magnetic system with permanent magnet and yokes. Because of the strong magnetic field enough to saturate the pipe, there could be distortion of the sensing signals because of the magnetization of the pipeline itself, To detect the defects precisely, the sensing signals are need to be compensated to eliminate the distortions coming from the media hysteresis. In this paper, the magnetizations of the pipeline in MFL type NDT are analyzed by Preisach model and 3D FEM. The distortions of the sensing signals are analyzed.

Demonstration of Developed Numerical Procedure to Describe 3-dimensional Long-term Behavior of the Pleistocene Marine Foundations (Pleistocene 해저지반의 3차원 장기거동 해석을 위해 개발한 수치해석 기법의 입증)

  • Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.5-14
    • /
    • 2020
  • Kansai International Airport (KIX) was opened in September 1994. Although 26 years have passed since the completion of the first island, long-term settlement is still in progress. This settlement occurs in the Pleistocene layer. For it is not easy to determine the permeability of the Pleistocene sand layer because the thickness and the degree of fine content in the horizontal direction are constantly changing. In addition, it is also a difficult to predict the interactive behavior of the ground due to the construction of the second phase island adjacent to it. In order to solve this problem, a two-dimensional finite element analysis considering elasto-viscoplastic was performed to evaluate the long-term deformation, including the interactive behavior of the alternating Pleistocene foundation due to the construction of two adjacent reclaimed islands. In general, two-dimensional analysis can be used when a section can represent the entire sections. However, Kansai Airport is an artificial reclaimed island so two-dimensional analysis cannot solve the problem such as the stress deformation in the corners of the island. Additionally, the structure of the actual sub-ground through physical exploration is non-homogeneity and its thickness is also not constant. Therefore, there are limitations for the two-dimensional analysis to explain the phenomena. That is, three-dimensional analysis is strongly required. Due to these demands, the author extended the existing two-dimensional program capable of elasto-viscoplastic analysis to three-dimensional and completed the verification of the three-dimensional program developed through one-dimensional consolidation analysis. In order to demonstrate the validity of the developed 3D program that has been verified, an analysis is performed under the same analysis conditions as the existing research using a two-dimensional program. The effectiveness of the developed 3D numerical analysis program was demonstrated by comparing the analysis results with the 2D results and actual measurement data.

Thermo-mechanical Behavior of WB-PBGA Packages Considering Viscoelastic Material Properties (점탄성 물성치를 고려한 WB-PBGA 패키지의 열-기계적 변형 거동)

  • Kim, Man-Ki;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2012
  • It is known that thermo-mechanical properties of solder material and molding compound in WB-PBGA packages are considerably affected by not only temperature but elapsed time. In this paper, finite element analysis (FEA) taking material nonlinearity into account was performed for more reliable prediction on deformation behavior of a lead-free WB-PBGA package, and the results were compared with experimental results from moire interferometry. Prior to FEA on the WB-PBGA package, it was carried out for two material layers consisting of molding compound and substrate in terms of temperature and time-dependent viscoelastic effects of molding compound. Reliable deformation analysis for temperature change was then accomplished using viscoplastic properties for solder ball and viscoelastic properties for molding compound, and the analysis was also verified with experimental results. The result showed that the deformation of WB-PBGA packages was strongly dependent on material model of molding compound; thus, temperature and time-dependent viscoelastic behavior must be considered for the molding compound analysis. In addition, viscoelastic properties of B-type molding compound having comparatively high glass transition temperature of $135^{\circ}C$ could be recommended for reliable prediction on deformation of SAC lead-free WB-PBGA packages.

Reliability Assessment Based on an Improved Response Surface Method (개선된 응답면기법에 의한 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • response surface method (RSM) is widely used to evaluate th e extremely smal probability of ocurence or toanalyze the reliability of very complicated structures. Althoug h Monte-Carlo Simulation (MCS) technique can evaluate any system, the procesing time of MCS dependson the reciprocal num ber of the probability of failure. The stochastic finite element method could solve thislimitation. However, it is limit ed to the specific program, in which the mean and coeficient o f random variables are programed by a perturbation or by a weigh ted integral method. Therefore, it is not aplicable when erequisite programing. In a few number of stage analyses, RSM can construct a regresion model from the response of the c omplicated structural system, thus, saving time and efort significantly. However, the acuracy of RSM depends on the dist ance of the axial points and on the linearity of the limit stat e functions. To improve the convergence in exact solution regardl es of the linearity limit of state functions, an improved adaptive response surface method is developed. The analyzed res ults have ben verified using linear and quadratic forms of response surface functions in two examples. As a result, the be st combination of the improved RSM techniques is determined and programed in a numerical code. The developed linear adapti ve weighted response surface method (LAW-RSM) shows the closest converged reliability indices, compared with quadratic form or non-adaptive or non-weighted RSMs.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

Strength Analyses of New 2- and 3-Axis-Type Small Multiplying Gears in Dental Hand-Pieces (치과드릴 구동용 신 소형 2축 및 3축형 증속기어 강도특성 비교)

  • Kim, Cheol;Kim, Ju-Yeong;Lee, Jung-Ho;Kwak, Se-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1027-1032
    • /
    • 2012
  • Two types of very small multiplying gears and arrays have been developed for new dental hand-pieces, and the increased speed ratios, modules, number of teeth, gear diameters, and gear types were calculated based on the dynamics of the machinery. The contacting and bending strengths were evaluated for gear teeth with two design concepts using AGMA equations and finite element analyses, and the contacting stresses on teeth with and without DLC (diamond-like-carbon) coating layers were calculated. Fatigue and tension tests were performed to obtain an S-N curve, the Young's modulus, and the strength of the gear material, and these were utilized in the analyses. Slightly larger stresses were found for 2-axis-type gears than for other types of gears, and the S-N curves showed that a gear lifetime of 109 cycles was satisfied. The contacting stresses in gears coated with DLC were reduced by 30%. A new prototype model of a hand-piece with small gears was successfully fabricated and tested.

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

Using Topology Optimization, Light Weight Design of Vehicle Mounted Voltage Converter for Impact Loading (위상 최적화 기법을 이용한 충격하중에 대한 차량 탑재형 전력변환장치의 마운트 경량화 설계)

  • Ko, Dong-Shin;Lee, Hyun-Kyung;Hur, Deog-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.353-358
    • /
    • 2018
  • In this study, it is describe to an optimization analysis process for the weight reduction of the voltage converter in the electric vehicle charging systems. The optimization design is a technique that finds the optimal material distribution under a given material quantity constraint by combining the design sensitivity with the material properties and the mathematical optimization. Among the topology optimization, a lightweight design is performed by a solid isotropic material with penalization with simple formula and well-convergence. The lightweight design consists of three steps. As a first step, a finite element model for the basic design of the on-board voltage converter was constructed and static analysis was performed on the load. In the second step, the optimum shape is obtained for the lightweight by performing the topology optimization using the solid isotropic material with penalization applying the stiffness coefficient of the isotropic material to the static analysis result. As a final step, impact analysis was performed by applying a half-sinusoidal pulse shape impact load which satisfies the impact test standard of the vehicle-mounted part with respect to the optimum shape. In the topology optimization, the design domain was defined as the mounting bracket area, and the design technology was finally achieved by optimizing the mounting bracket to achieve a weight reduction of 20% over the basic design.

Numerical Approach to Optimize Piercing Punch and Die Shape in Hub Clutch Product (허브클러치 제품의 피어싱 펀치 및 금형 형상 최적화를 위한 수치접근법)

  • Gu, Bon-Joon;Hong, Seok-Moo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.517-524
    • /
    • 2019
  • The overdrive hub clutch is attached to a 6-speed automatic transmission to reduce fuel consumption by using the additional power of the engine. This paper proposes a means to minimize the load and roll-over ratio on the punch during the piercing process for the overdrive hub clutch product. Die clearance, shear angle, and friction coefficient, which can affect the load and roll-over ratio of the punch during processing, were set as the design variables. Sensitivity analysis was also conducted to determine the influence of each design variable on the punch load and roll-over ratio. As a result, shear angle, friction coefficient and die clearance were found to be sensitive to load and roll-over ratio. The punch load and roll-over ratio were set as the objective function and the equation of each design variable and objective function was derives using the Response Surface Method. Finally, the optimal value of the design variables was derived using the Response Surface Method. Application of this model to finite element analysis resulted in 22.14% improvement in the roll-over ratio of the punch load and material.