• Title/Summary/Keyword: FGS (Fuel Gas Supply System)

Search Result 3, Processing Time 0.027 seconds

Gas Leakage Condition and CFD analysis on Gas Fuelled ship FGS system (Gas Fuelled Ship FGS 시스템에 대한 가스누출 조건 검토 및 CFD 해석)

  • Kim, Ki-Pyoung;Kang, Ho-Keun;Park, Jae-Hong;Choung, Choung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.7-10
    • /
    • 2011
  • According to the requirement of Res.MSC.285(86) for natural gas-fueled engine installations in ships, pump and compressor rooms should be fitted with effective mechanical ventilation system of the under pressure type, providing a ventilation capacity of at least 30 air changes per hour. It generally considered that gas leakage is more likely from a Fueled Gas Supply System(FGS) room as compared to other places, where installed in many kind of machinery or equipments like gas supply high-pressure pipes, valves, flanges and etc. Furthermore, leaked gas may be dispersed in a short time in an enclosed space, especially a FGS room, due to high pressure. However, the present requirement in Res.MSC.285(86) just considers the ventilating capacity of air changes per hour but the capacity of leaked gas. Hence, the current requirements may not meet effectively when enforcing the new propulsion systems as marine fuel. This study is conducted for the purpose of safety evaluation about the dispersion and ventilation efficiency with estimated leakage scenario. Numerical analysis predictions as the result of this paper are explained to know the features of flow pattern and the diffusion of natural gas concentration.

  • PDF

On the Application of CFD Codes for Natural Gas Dispersion and Explosion in Gas Fuelled Ship

  • Kim, Ki-Pyoung;Kang, Ho-Keun;Choung, Choung-Ho;Park, Jae-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.946-956
    • /
    • 2011
  • The main objectives of this study are to analyze the leaked gas dispersion and quantify the potential overpressures due to vapor cloud explosions in order to identify the most significant contributors to risk by using Computational Fluid Dynamics (CFX & FLACS) for gas fuelled ships. A series of CFD simulations and analyses have been performed for the various gas release scenarios in a closed module, covering different release rates and ventilating methods. This study is specially focused on the LNG FGS (Fuel Gas Supply) system recently developed for the propulsion of VLCC crude oil carriers by shipyards. Most of work presented is discussed on the gas dispersion from leaks in the FGS room, and shows some blast prediction validation examples.

Evaluation of structural integrity of the HP vaporizer and pipes of LNG fuel gas supply system (LNG 연료 선박용 FGSS의 고압 기화기와 출입구 배관에 대한 구조 건전성 평가)

  • Kim, Chang-Soo;Yoon, Joo-Hwan;Lee, Chang-Joon;Ha, Man-Young;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.780-785
    • /
    • 2016
  • Heavy oil used as ship propulsion has a serious issue regarding exhaust emission of global warming. Recently, among large-scale merchant ships are using LNG as green ships so called ech-ships. In this study, an vaporizer and pipes under cryogenic and high pressure load were considered to evaluate structural integrity according to codes. Structural analysis of the vaporizer and pipes was performed using the commercial code, ANSYS. Integrity evaluation of the vaporizer based on von Mises stress was performed in accordance with allowable stress specified in ASME Boiler & Pressure Vesssel Section VIII Division 2. To assess structural integrity of the pipes, stress components were combined and compared with ASME B31.3. The calculated stresses for all load cases are lower than allowable stresses, therefore the structural integrity of equipments are verified.