• Title/Summary/Keyword: FGMM

Search Result 23, Processing Time 0.024 seconds

Solution of TM Scattering Applying FGMM and PMM for Resistive Strip Grating Between a Grounded Double Dielectric Layer (접지된 2중 유전체층 사이의 저항띠 격자에 대해 FGMM과 PMM을 적용한 TM 산란 해)

  • Uei-Joong Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.77-82
    • /
    • 2023
  • In this paper, TM(tranverse magnetic) electromagnetic scattering problems for resitive strip grating between grounded double dielectric layers are analyzed by using the FGMM(fourier galerkin moment method) and PMM(point matching method) known as a numerical method of electromagnetic field. The boundary conditions are applied to obtain the unknown field coefficients, the resistive boundary condition is applied to analysis of resistive strip. Overall, when the unoform resistivity decreased, the magnitude of the current density induced in the resistive strip increased, and the reflected power also increased. Also, as the thickness and relative permittivity of the double dielectric layers increased, the overall reflected power increased. The numerical results obtained by using the numerical methods of FGMM and PMM to the structure proposed in this paper agree very well.

Solution of TM Scattering Applying FGMM and PMM for Conductive Strip Grating Between a Grounded Double Dielectric Layers (접지된 2중 유전체층 사이의 도체띠 격자에 대해FGMM과 PMM을 적용한 TM 산란 해)

  • Uei-Joong Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.721-726
    • /
    • 2023
  • In this paper, TM electromagnetic scattering problems for conductive strip grating between grounded double dielectric layers are analyzed by applying the FGMM(fourier galerkin moment method) and PMM(point matching method) known as a numerical method of electromagnetic field. The boundary conditions are applied to obtain the unknown field coefficients. In order to deal with the problem of grounded double dielectric layers, numerical calculation was performed only when the thickness and relative permittivity of the dielectric layers had the same value. As the thickness of the dielectric layer and the relative permittivity increased, the overall reflected power increased, and the minimum values of the reflected power shifted in the direction of increasing the strip width. The numerical results obtained by applying the numerical methods of FGMM and PMM to the structure proposed in this paper agree very well.

Analysis of E-polarized Electromagnetic Scattering by a Conductive Strip Grating Between a Double Dielectric Layer Using FGMM (FGMM을 이용한 2중 유전체층 사이의 완전도체띠 격자구조에 의한 E-분극 전자파 산란 해석)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.77-82
    • /
    • 2020
  • In this paper, E-polarized electromagnetic scattering problems by a conductive strip grating between a double dielectric layer are analyzed by applying the FGMM(Fourier-Galerkin moment method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, and the conductive boundary condition is applied to analysis of the conductive strip. The numerical results for the normalized reflected and transmitted power are analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of the double dielectric layers, and incident angles. Generally, as the value of the dielectric constant of the double dielectric layer increases, the reflected power increases and the transmitted power decreases, respectively. As the dielectric constant of the double dielectric layer increases, the current density induced in the strip center increases. The numerical results for the presented structure of this paper are shown in good agreement compared to those of the existing papers.

Analysis of H-polarized Electromagnetic Scattering by a Conductive Strip Grating Between a Grounded Double Dielectric Layer Using FGMM (FGMM을 이용한 접지된 2중 유전체층 사이의 완전도체띠 격자구조에 의한 H-분극 전자파 산란 해석)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.83-88
    • /
    • 2020
  • In this paper, H-polarized electromagnetic scattering problems by a conductive strip grating between a grounded double dielectric layer are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, and the conductive boundary condition is applied to analysis of the conductive strip. The numerical results for normalized reflected power are analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of the grounded double dielectric layers, and incident angles. Generally, as the value of the dielectric constant and dielectric thickness of a grounded double dielectric layer increases, the reflected power increased. And as dielectric thickness of a grounded double dielectric layer increases, the current density induced in the strip center increases. The numerical results for the presented structure of this paper are shown in good agreement compared to those of the existing papers using the PMM(Point Matching Method).

Solution of TE Scattering Applying FGMM for Resistive Strip Grating Between a Grounded Double Dielectric Layer (접지된 2중 유전체층 사이의 저항띠 격자에 대해 FGMM을 적용한 TE 산란 해)

  • Uei-Joong Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.71-76
    • /
    • 2023
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating between a grounded double dielectric layer are analyzed by applying the FGMM(fourier galerkin moment method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. Overall, as the resistivity decreased, the magnitude of the current density induced in the resistive strip increased, and the reflected power also increased. In case of uniform resistivity, the reflected power decreased as the relative permittivity of the dielectric layers increased or the thickness of the dielectric layer increased. The numerical results for the presented structure in this paper are shown in good agreement compared to those of the existing papers.

Solution of TE Scattering by a Resistive Strip Grating Between a Double Dielectric Layer Using FGMM (FGMM을 이용한 2중 유전체층 사이의 저항띠 격자구조에 의한 TE 산란 해)

  • Uei-Joong Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.619-624
    • /
    • 2023
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating between a double dielectric layer are analyzed by using the FGMM(fourier galerkin moment method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. In order to deal with the problem of the double dielectric layer, numerical calculation was performed only when the thickness and relative permittivity of the dielectric layers had the same value. Overall, as the resistivity of the uniform resistivity increased, the current density induced in the resistive strip decreased, the reflected power decreased, and the transmitted power relatively increased. The numerical results of the structure proposed in this paper are shown in good agreement compared to the results of PMM, a numerical analysis method of the existing paper.

Solution of E-polarized Scattering by a Resistive Strip Grating Between a Double Dielectric Layer Using FGMM (FGMM을 이용한 2중 유전체층 사이의 저항띠 격자구조에 의한 TM 산란 해)

  • Uei-Joong Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.641-646
    • /
    • 2023
  • In this paper, TM(transverse magnetic) scattering problems by a resistive strip grating between a double dielectric layer are analyzed by using the FGMM(fourier galerkin moment method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. Overall, as the uniform resistivity of the resistive strip increased, the size of the current density induced in the resistance band decreased, the reflected power decreased, and the transmitted power increased. In addition, As the thickness of the dielectric layer increased, the reflected power increased and the transmitted power relatively decreased. The numerical results of the structure proposed in this paper are shown in good agreement compared to the results of PMM, a numerical analysis method of the existing paper.

A Study on TE Scattering by a Conductive Strip Grating Over a Dielectric Layer (유전체층 위의 완전도체띠 격자구조에 의한 TE 산란에 관한 연구)

  • Yoon, Uei-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4158-4163
    • /
    • 2015
  • In this paper, the solutions of TE(transverse electric) scattering problems by a condutive strip grating over a dielectric layer are analyzed by using the FGMM(fourier galerkin moment method) and PMM(point matching method) known as a numerical method of electromagnetic fileld. The scattered electromagnetic fields are expanded in a series of floguet mode functions, the boundary conditions are applied to obtain the unknown field coefficients, and the conductive boundary condition is used for the relationship between the tangential electric field and the induced surface current density on the strip. The numerical results for the reflected and transmitted power of zeroth mode analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of dielectric layer, and incident angles. Generally, according to the relative permittivity of dielectric layer increased, also the normalized reflected power of zeroth mode increased. To examine the accruacy of this paper, the numerical results of FGMM shown in good agreement compared to those of PMM.

Solution of TE Scattering by a Conductive Strip Grating Over the Grounded Two Dielectric Layers with Edge Boundary Condition (모서리 경계조건을 만족하는 접지된 2개 유전체층 위의 도체띠 격자구조에 의한 TE 산란의 해)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.183-188
    • /
    • 2013
  • In this paper, the TE (Transverse Electric) scattering problems by a perfectly conducting strip grating over a grounded two dielectric layers with edge boundary condition are analyzed by applying the FGMM (Fourier Galerkin Moment Method). For the TE scattering problem, the induced surface current density is expected to the zero value at both edges of the strip, then the induced surface current density on the strip is expanded in a series of the multiplication of the Chebyshev polynomials of the second kind and the functions of appropriate edge boundary condition. The numerical results shown the fast convergent solution and good agreement compared to those of the existing papers.

H-Polarized Scattering by a Resistive Strip Grating with Zero Resistivity at Strip-Edges Over a Grounded Dielectric Plane (접지된 유전체 평면위의 스트립 양끝에서 0 저항율을 갖는 저항띠 격자구조에 의한 H-분극 산란)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.349-354
    • /
    • 2011
  • In this paper, H-polarized scattering problems by a resistive strip grating with zero resistivity at strip-edges over a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of a dielectric layer, and incident angles of a transverse electric (TE) plane wave are analyzed by applying the Fourier-Galerkin Moment Method (FGMM). The tapered resistivity of resistive strips has zero resistivity at strip edges, then the induced surface current density on the resistive strip is expanded in a series of Chebyshev polynomials of the second kind as a orthogonal ploynomials. The sharp variations of the reflected power are due to resonance effects were previously called wood's anomallies, the numerical results for the reflected power are compared with those of uniform resistivity in the existing papers.