• Title/Summary/Keyword: FGM (Functionally Graded Material)

Search Result 319, Processing Time 0.018 seconds

Buckling and bending of coated FG graphene-reinforced composite plates and shells

  • Ahmed Amine Daikh;Amin Hamdi;Hani M. Ahmed;Mohamed S. Abdelwahed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.113-128
    • /
    • 2023
  • The advancement of theoretical research has numerous challenges, particularly with regard to the modeling of structures, in contrast to experimental investigation of the mechanical behavior of complex systems. The main objective of this investigation is to provide an analytical analysis of the static problem of a new generation of composite structure, namely, functionally graded FG graphene reinforced composite GRC coated plates/shells. A complex power law function is used to define the material's graduation. Investigations are conducted on Hardcore and Softcore coated FG plates/shells. The virtual work approach is used to perform the equilibrium equations, which are then solved using the Galerkin technique to account for various boundary conditions. With reliable published articles, the presented solution is validated. The effects of hardcore and softcore distributions, gradation indexes, and boundary conditions on the buckling, bending deflection and stresses of FG GRC-coated shells are presented in detail. Obtained results and the developed procedure are supportive for design and manufacturing of FG-GRC coated plates/shells in several fields and industries e.g., aerospace, automotive, marine, and biomedical implants.

Unsteady Thermoelasic Deformation and Stress Analysis of a FGM Rectangular Plate (경사기능재료 사각 판의 비정상 열 탄생변형과 응력해석)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.91-100
    • /
    • 2004
  • A Green's function approach is adopted for analyzing the thermoelastic deformations and stresses of a plate made of functionally graded materials(FGMs). The solution to the 3-dimensional unsteady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green's function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical analysis for a simply supported plate is carried out and effects of material properties on unsteady thermoclastic behaviors are discussed.

Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.279-298
    • /
    • 2016
  • Present disquisition proposes an analytical solution method for exploring the buckling characteristics of porous magneto-electro-elastic functionally graded (MEE-FG) plates with various boundary conditions for the first time. Magneto electro mechanical properties of FGM plate are supposed to change through the thickness direction of plate. The rule of power-law is modified to consider influence of porosity according to two types of distribution namely even and uneven. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM plate under magneto-electrical field via Hamilton's principle. An analytical solution procedure is exploited to achieve the non-dimensional buckling load of porous FG plate exposed to magneto-electrical field with various boundary condition. A parametric study is led to assess the efficacy of material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage, boundary conditions, aspect ratio and side-to-thickness ratio on the non-dimensional buckling load of the plate made of magneto electro elastic FG materials with porosities. It is concluded that these parameters play remarkable roles on the dynamic behavior of porous MEE-FG plates. The results for simpler states are confirmed with known data in the literature. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment

  • Ebrahimi, Farzad;Jafari, Ali;Selvamani, Rajendran
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.83-94
    • /
    • 2020
  • An analytical formulation and solution process for the buckling analysis of porous magneto-electro-elastic functionally graded (MEE-FG) beam via different thermal loadings and various boundary conditions is suggested in this paper. Magneto electro mechanical coupling properties of FGM beam are taken to vary via the thickness direction of beam. The rule of power-law is changed to consider inclusion of porosity according to even and uneven distribution. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. Change in pores along the thickness direction stimulates the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM beam under magneto-electrical field via Hamilton's principle. An analytical model procedure is adopted to achieve the non-dimensional buckling load of porous FG beam exposed to magneto-electrical field with various boundary conditions. In order to evaluate the influence of thermal loadings, material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage and boundary conditions on the critical buckling temperature of the beam made of magneto electro elastic FG materials with porosities a parametric study is presented. It is concluded that these parameters play remarkable roles on the buckling behavior of porous MEE-FG beam. The results for simpler states are proved for exactness with known data in the literature. The proposed numerical results can serve as benchmarks for future analyses of MEE-FG beam with porosity phases.

A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach

  • Chikr, Sara Chelahi;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.471-487
    • /
    • 2020
  • In this work, the buckling analysis of material sandwich plates based on a two-parameter elastic foundation under various boundary conditions is investigated on the basis of a new theory of refined trigonometric shear deformation. This theory includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Applying the principle of virtual displacements, the governing equations and boundary conditions are obtained. To solve the buckling problem for different boundary conditions, Galerkin's approach is utilized for symmetric EGM sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of plate aspect ratio, elastic foundation coefficients, ratio, side-to-thickness ratio and boundary conditions on the buckling response of FGM sandwich plates. A good agreement between the results obtained and the available solutions of existing shear deformation theories that have a greater number of unknowns proves to demonstrate the precision of the proposed theory.

The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams

  • Yahiaoui, Mohammed;Tounsi, Abdelouahed;Fahsi, Bouazza;Bouiadjra, Rabbab Bachir;Benyoucef, Samir
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • This paper presents an analysis of the bending, buckling and free vibration of functionally graded sandwich beams resting on elastic foundation by using a refined quasi-3D theory in which both shear deformation and thickness stretching effects are included. The displacement field contains only three unknowns, which is less than the number of parameters of many other shear deformation theories. In order to homogenize the micromechanical properties of the FGM sandwich beam, the material properties are derived on the basis of several micromechanical models such as Tamura, Voigt, Reuss and many others. The principle of virtual works is used to obtain the equilibrium equations. The elastic foundation is modeled using the Pasternak mathematical model. The governing equations are obtained through the Hamilton's principle and then are solved via Navier solution for the simply supported beam. The accuracy of the proposed theory can be noticed by comparing it with other 3D solution available in the literature. A detailed parametric study is presented to show the influence of the micromechanical models on the general behavior of FG sandwich beams on elastic foundation.

Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models

  • Bouiadjra, Rabbab Bachir;Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.317-328
    • /
    • 2018
  • In this paper, a new refined quasi-three-dimensional (3D) shear deformation theory for the bending analysis of functionally graded plate is presented. The number of unknown functions involved in this theory is only four against five or more in the case of the other shear and normal deformation theories. Due to its quasi-3D nature, the stretching effect is taken into account in the formulation of governing equations. In addition, the effect of different micromechanical models on the bending response of these plates is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG plates whose properties vary continuously across the thickness according to a simple power law. The present theory accounts for both shear deformation and thickness stretching effects by a parabolic variation of displacements across the thickness, and the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The problem is solved for a plate simply supported on its edges and the Navier solution is used. The results of the present method are compared with others from the literature where a good agreement has been found. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG plates.

Flutter phenomenon in composite sandwich beams with flexible core under follower force

  • Saghavaz, Fahimeh Rashed;Payganeh, GHolamhassan;Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.615-630
    • /
    • 2021
  • The main purpose of the present work was to study the dynamic instability of a three-layered, thick composite sandwich beam with the functionally graded (FG) flexible core subjected to an axial compressive follower force. Flutter instability of a sandwich cantilever beam was analyzed using the high-order theory of sandwich beams, for the first time. The governing equations in general for sandwich beams with an FG core were extracted and could be used for all types of sandwich beams with any types of face sheets and cores. A polynomial function is considered for the vertical distribution of the displacement field in the core layer along the thickness, based on the results of the first Frosting's higher order model. The governing partial differential equations and the equations of boundary conditions of the dynamic system are derived using Hamilton's principle. By applying the boundary conditions and numerical solution methods of squares quadrature, the beam flutter phenomenon is studied. In addition, the effects of different geometrical and material parameters on the flutter threshold were investigated. The results showed that the responses of the dynamic instability of the system were influenced by the follower force, the coefficients of FGs and the geometrical parameters like the core thickness. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory. The results showed that the follower force of the flutter phenomenon threshold for long beams tends to the corresponding results in the Timoshenko beam.

The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT

  • Tahir, Saeed I.;Tounsi, Abdelouahed;Chikh, Abdelbaki;Al-Osta, Mohammed A.;Al-Dulaijan, Salah U.;Al-Zahrani, Mesfer M.
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.501-511
    • /
    • 2022
  • Earthquake Resistant Design Philosophy seeks (a) no damage, (b) no significant structural damage, and (c) significant structural damage but no collapse of normal buildings, under minor, moderate and severe levels of earthquake shaking, respectively. A procedure is proposed for seismic design of low-rise reinforced concrete special moment frame buildings, which is consistent with this philosophy; buildings are designed to be ductile through appropriate sizing and reinforcement detailing, such that they resist severe level of earthquake shaking without collapse. Nonlinear analyses of study buildings are used to determine quantitatively (a) ranges of design parameters required to assure the required deformability in normal buildings to resist the severe level of earthquake shaking, (b) four specific limit states that represent the start of different structural damage states, and (c) levels of minor and moderate earthquake shakings stated in the philosophy along with an extreme level of earthquake shaking associated with the structural damage state of no collapse. The four limits of structural damage states and the three levels of earthquake shaking identified are shown to be consistent with the performance-based design guidelines available in literature. Finally, nonlinear analyses results are used to confirm the efficacy of the proposed procedure.