• Title/Summary/Keyword: FG-5

Search Result 226, Processing Time 0.022 seconds

Compositional Analysis of Lentil (Lens culinaris) Cultivars Related to Colors and Their Antioxidative Activity

  • Lee, So-Young;Yeo, Yun-Soo;Park, Soo-Yun;Lee, Seong-Gon;Lee, Si-Myung;Cho, Hyun-Suk;Chung, Nam-Jin;Oh, Seon-Woo
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.192-203
    • /
    • 2017
  • Metabolite profile is a powerful analytical technique to identify the functional characterization of plants. In this study, the phytochemicals and secondary metabolites of lentils (Lens culinaris) were analyzed to compare the anti-oxidative activities according to the different colors. The polar metabolites, fatty acids, carotenoids, flavonoids, anthocyanins, total phenolic acids, DPPH activity were analyzed. Three kind of lentils, French green whole lentil (FG), red whole lentil (LR), and green whole lentil (LG) (ASIA SEED Co., LTD), were used for this study. Fatty acids, phytochemicals, and antioxidative components from each lentil varieties were analyzed by official methods. The contents of lutein in carotenoids were 6-9 times higher than zeaxanthin in all lentils, but were not significantly different among three varieties. The content of carotenoids in FG was lower significantly than those in the LR and LG. Myricetin and luteolin were detected in the only FG. Kaempferol and delphinidin were significantly highest in the FG. Most of the phenolic acids except coumarate were higher in FG and LG than in LR. Also antioxidant effects ($EC_{50}$) were higher in FG and LG than in LR. The analyzed metabolites obtained from lentils showed distinct separation in the PCA results according to the varieties. Also, lentils showed different anti-oxidant profiles according to the colors. FG and LG showing higher contents of phytochemicals showed higher antioxidative activity than LG containing relative low contents of phytochemicals.

The effect of embedding a porous core on the free vibration behavior of laminated composite plates

  • Safaei, Babak
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.659-670
    • /
    • 2020
  • This paper proposes the use of a porous core between layers of laminated composite plates to examine its effect on the natural frequencies of the resulted porous laminated composite sandwich plate (PLCSP) resting on a two-parameter elastic foundation. Moreover, it has been suggested that the dispersion of porosity has two different functionally graded (FG) patterns which are compared with a uniformly dispersed (UD) profile to find their best vibrational efficiency in the proposed PLCSPs. In FG patterns, two types of dispersions, including symmetric (FG-S) and asymmetric (FG-A) patterns have been considered. To derive the governing Eigen value equation of such structures, the first order shear deformation theory (FSDT) of plates has been employed. Accordingly, a finite element method (FEM) is developed to solve the derived Eigen value equation. Using the mentioned theory and method, the effects of porosity parameters, fiber orientation of laminated composite, geometrical dimensions, boundary conditions and elastic foundation on the natural frequencies of the proposed PLCSPs have been studied. It is observed that embedding porosity in core layer leads to a significant improvement in the natural frequencies of PLCSPs. Moreover, the natural frequencies of PLCSPs with FG porous core are higher than those with UD porous core.

Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation

  • Ebrahimi, Farzad;Ehyaei, Javad;Babaei, Ramin
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.245-261
    • /
    • 2016
  • Thermo-mechanical buckling problem of functionally graded (FG) nanoplates supported by Pasternak elastic foundation subjected to linearly/non-linearly varying loadings is analyzed via the nonlocal elasticity theory. Two opposite edges of the nanoplate are subjected to the linear and nonlinear varying normal stresses. Elastic properties of nanoplate change in spatial coordinate based on a power-law form. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanoplate. The equations of motion for an embedded FG nanoplate are derived by using Hamilton principle and Eringen's nonlocal elasticity theory. Navier's method is presented to explore the influences of elastic foundation parameters, various thermal environments, small scale parameter, material composition and the plate geometrical parameters on buckling characteristics of the FG nanoplate. According to the numerical results, it is revealed that the proposed modeling can provide accurate results of the FG nanoplates as compared some cases in the literature. Numerical examples show that the buckling characteristics of the FG nanoplate are related to the material composition, temperature distribution, elastic foundation parameters, nonlocality effects and the different loading conditions.

The immune-enhancement effect by Falun Gong cultivation

  • Jeong, Hyun-Ja;Kang, Ji-Seok;Kim, Hyung-Min;Lee, Ki-Nam
    • Advances in Traditional Medicine
    • /
    • v.2 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • Falun Gong (FG) is an advanced system of cultivation and practice, which is beneficial for both mind and body. In this study we investigated the effects of FG on the production of cytokines in FG practitioner (FGP). To study whether plasma cytokines levels were affected by FG, their levels were analyzed. The amount of $interferon-{\gamma}$ $(IFN-{\gamma})$, interleukin (IL)-2, IL-4 and IL-6 (2.5-fold for $IFN-{\gamma}$, 1.2-fold for IL-2, 2.1-fold for IL-4 and 2.5-fold for IL-6, respectively) were significantly higher in the FGP group than normal group (P<0.05). Peripheral blood mononuclear cells obtained from normal healthy control and FGP were cultured for 24 h in the presence or absence of lipopolysaccharide. The amount of $IFN-{\gamma}$, IL-2, IL-4 and IL-6 in culture supernatant was quantified. However, there were no significant differences in the level of the same cytokines between the normal and FGP group. These data suggest that FG cultivation may contribute to immune-enhancement in vivo.

Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory

  • Bekkaye, Tahar Hacen Lamine;Fahsi, Bouazza;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.439-450
    • /
    • 2020
  • In this research, bending and buckling analyses of porous functionally graded (FG) plate under mechanical load are presented. The properties of the FG plate vary gradually across the thickness according to power-law and exponential functions. The material imperfection is considered to vary depending to a logarithmic function. The plate is modeled by a refined trigonometric shear deformation theory where the use of the shear correction factor is unnecessary. The governing equations of the FG plate are derived via virtual work principle and resolved via Navier solutions. The accuracy of the present model is checked by comparing the obtained results with those found in the literature. The various effects influencing the stresses, displacements and critical buckling loads of the plate are also examined and discussed in detail.

Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.511-525
    • /
    • 2019
  • This paper presents an analytical study of wave propagation in simply supported graduated functional plates resting on a two-parameter elastic foundation (Pasternak model) using a new theory of high order shear strain. Unlike other higher order theories, the number of unknowns and governing equations of the present theory is only four unknown displacement functions, which is even lower than the theory of first order shear deformation (FSDT). Unlike other elements, the present work includes a new field of motion, which introduces indeterminate integral variables. The properties of the materials are assumed to be ordered in the thickness direction according to the two power law distributions in terms of volume fractions of the constituents. The wave propagation equations in FG plates are derived using the principle of virtual displacements. The analytical dispersion relation of the FG plate is obtained by solving an eigenvalue problem. Numerical examples selected from the literature are illustrated. A good agreement is obtained between the numerical results of the current theory and those of reference. A parametric study is presented to examine the effect of material gradation, thickness ratio and elastic foundation on the free vibration and phase velocity of the FG plate.

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.

An analytical study on free vibration of magneto electro micro sandwich beam with FG porous core on Vlasov foundation

  • Kazem Alambeigi;Mehdi Mohammadimehr;Mostafa Bamdad
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.423-439
    • /
    • 2023
  • The aim of this paper is to investigate the free vibration behavior of the micro sandwich beam composing of five layers such as functionally graded (FG) porous core, nanocomposite reinforced by carbon nanotubes (CNTs) and piezomagnetic/piezoelectric layers subjected to magneto electrical potential resting on silica aerogel foundation. The effect of foundation has been taken into account using Vlasov model in addition to rigid base assumption. For this purpose, an iterative technique is applied. The material properties of the FG porous core and FG nanocomposite layers are considered to vary throughout the thickness direction of the beams. Based on the Timoshenko beam theory and Hamilton's principle, the governing equations of motion for the micro sandwich beam are obtained. The Navier's type solution is utilized to obtain analytical solutions to simply supported micro sandwich beam. Results are verified with corresponding literatures. In the following, a study is carried out to find the effects of the porosity coefficient, porous distribution, volume fraction of CNT, the thickness of silica aerogel foundation, temperature and moisture, geometric parameters, electric and magnetic potentials on the vibration of the micro sandwich beam. The results are helpful for the design and applications of micro magneto electro mechanical systems.

Effect of Aged and Fermented Garlic Extracts as Natural Antioxidants on Lipid Oxidation in Pork Patties

  • Lee, Hyun-Jin;Yoon, Dong-kyu;Lee, Na-yeon;Lee, Chi-ho
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.610-622
    • /
    • 2019
  • The aim of this study was to investigate the natural antioxidant activity of raw garlic (RG), aged black garlic (AG), and garlic fermented with Bacillus subtilis (FG) extracts on pork patty lipid oxidation throughout refrigerated storage. The total polyphenol, total flavonoid content, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity of three different types of garlic extracts were measured. The total phenolic and flavonoid content of AG was significantly higher than that of FG and RG; FG also showed a significantly higher total phenolic content than that of RG (p<0.05). The DPPH and ABTS radical scavenging activity of AG and FG was significantly higher than that of RG and that of AG was significantly higher than that of FG (p<0.05). To investigate the effect of processed garlic extracts on pork patty lipid oxidation, freeze-dried extracts of RG, FG, and AG were added to the patties at levels of 0.5% (w/w). Patties containing 0.01% (w/w) ascorbic acid (AA) and patties without treatment (CON) were compared with patties containing garlic extracts. The pH value, 2-thiobarbituric acid reactive substances value, and volatile basic nitrogen value of pork patties containing AG and FG extracts were significantly decreased compared to the other groups (CON, AA, and RG; p<0.05). Taken together, these results suggest that AG and FG extracts possess strong antioxidative activity and can serve as natural antioxidative additives to prevent pork patty lipid oxidation.

Molecular Characterization of Fusarium Graminearum Virus 2 Isolated from Fusarium graminearum Strain 98-8-60

  • Yu, Ji-Suk;Lee, Kyung-Mi;Son, Moon-Il;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.285-290
    • /
    • 2011
  • Fusarium graminearum virus 2 (FgV2) infects Fusarium graminearum strain 98-8-60 and has at least five segments of double-stranded RNAs (dsRNAs), denoted as dsRNA-1 to dsRNA-5. In this study, the genome of FgV2 was sequenced and its phylogenetic relationship with other mycoviruses was analyzed. The lengths of FgV2 dsRNAs 1-5 ranged from 2414 to 3580 base pairs (bp). The 5' and 3' untranslated regions (UTRs) are highly conserved, and each dsRNA segment had 78-105 and 84-306 bp of 5' and 3' UTRs, respectively. Each dsRNA segment contained a single open reading frame (ORF). Computer analysis of dsRNA-1 revealed a putative open reading frame (ORF) that shows high sequence identity with an RNA-dependent RNA polymerase (RdRp) containing eight conserved motifs. dsRNAs 2-5 also each contain one putative ORF coding for products of unknown function. The sequences of FgV2 dsRNA-2 and dsRNA-3 have significant sequence identity with Magnaporthe oryzae chrysovirus 1 (MoCV1) dsRNA-3 and -4, respectively. When compared to other dsRNA mycoviruses in a phylogenetic analysis of the putative RdRp protein, FgV2 was found to form a distinct virus clade with Aspergillus mycovirus 1816 and MoCV1 in the family Chrysoviridae.