• Title/Summary/Keyword: FFT (Fast Fourier Transform) analysis

Search Result 240, Processing Time 0.026 seconds

Analysis of Smart Antenna Performance Improving the Robustness of OFDM to Rayleigh Fading (레일리 페이딩 내구성을 개선시키는 OFDM 스마트안테나의 성능 분석)

  • Hong, Young-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.53-60
    • /
    • 2011
  • In order to augment the robustness of OFDM system to Rayleigh multipath fading, there exist two smart antenna algorithms, namely, Pre-FFT smart antenna and Post-FFT smart antenna. After the mathematical modeling of both smart antenna algorithms, computer simulations have been carried to compare and analyze the performance of generalized eigen problem based Pre-FFT algorithm and the performance of Wiener solution based Post-FFT algorithm. It has been shown that the Post-FFT smart antenna far outperforms the Pre-FFT smart antenna due to the computational complexities. Especially it is so when the multipath signal arrives at beyond the guard interval and a rich co-channel interferer is introduced. Performance of a subcarrier clustering method proposed to lessen the computing load has been compared to that of a typical Wiener solution based Post-FFT smart antenna. Performance comparison between MRC(Maximum Ratio Combining) diversity based Post-FFT algorithm and typical Post-FFT algorithm has also been carried.

Improved Correlation Identification of Subsurface Using All Phase FFT Algorithm

  • Zhang, Qiaodan;Hao, Kaixue;Li, Mei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.495-513
    • /
    • 2020
  • The correlation identification of the subsurface is a novel electrical prospecting method which could suppress stochastic noise. This method is increasingly being utilized by geophysicists. It achieves the frequency response of the underground media through division of the cross spectrum of the input & output signal and the auto spectrum of the input signal. This is subject to the spectral leakage when the cross spectrum and the auto spectrum are computed from cross correlation and autocorrelation function by Discrete Fourier Transformation (DFT, "To obtain an accurate frequency response of the earth system, we propose an improved correlation identification method which uses all phase Fast Fourier Transform (APFFT) to acquire the cross spectrum and the auto spectrum. Simulation and engineering application results show that compared to existing correlation identification algorithm the new approach demonstrates more precise frequency response, especially the phase response of the system under identification.

Accelerated Split Bregman Method for Image Compressive Sensing Recovery under Sparse Representation

  • Gao, Bin;Lan, Peng;Chen, Xiaoming;Zhang, Li;Sun, Fenggang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2748-2766
    • /
    • 2016
  • Compared with traditional patch-based sparse representation, recent studies have concluded that group-based sparse representation (GSR) can simultaneously enforce the intrinsic local sparsity and nonlocal self-similarity of images within a unified framework. This article investigates an accelerated split Bregman method (SBM) that is based on GSR which exploits image compressive sensing (CS). The computational efficiency of accelerated SBM for the measurement matrix of a partial Fourier matrix can be further improved by the introduction of a fast Fourier transform (FFT) to derive the enhanced algorithm. In addition, we provide convergence analysis for the proposed method. Experimental results demonstrate that accelerated SBM is potentially faster than some existing image CS reconstruction methods.

A Variable-Length FFT/IFFT Processor for Multi-standard OFDM Systems (다중표준 OFDM 시스템용 가변길이 FFT/IFFT 프로세서)

  • Yeem, Chang-Wan;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.209-215
    • /
    • 2010
  • This paper describes a design of variable-length FFT/IFFT processor (VL_FCore) for OFDM-based multi-standard communication systems. The VL_FCore adopts in-place single-memory architecture, and uses a hybrid structure of radix-4 and radix-2 DIF algorithms to accommodate various FFT lengths in the range of $N=64{\times}2^k\;(0{\leq}k{\leq}7)$. To achieve both memory size reduction and the improved SQNR, a two-step conditional scaling technique is devised, which conditionally scales the intermediate results of each computational stage. The performance analysis results show that the average SQNR's of 64~8,192-point FFT's are over 60-dB. The VL_FCore synthesized with a $0.35-{\mu}m$ CMOS cell library has 23,000 gates and 32 Kbytes memory, and it can operate with 75-MHz@3.3-V clock. The 64-point and 8,192-point FFT's can be computed in $2.25-{\mu}s$ and $762.7-{\mu}s$, respectively, thus it satisfies the specifications of various OFDM-based systems.

Development of Fault Diagnostic Algorithm based on Spectrum Analysis of Acceleration Signal for Wind Turbine System (가속도 신호의 주파수 분석에 기반한 풍력발전 고장진단 알고리즘 개발)

  • Ahn, Sung-Ill;Choi, Seong-Jin;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around the world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance. CMS(Condition Monitoring System) can be used to aid plant operator in achieving these goals. Its aim is to provide operators with information regarding th e health of their machine, which in turn, can help them improve operation efficiency. In this work, wind turbine fault diagnostic algorithm which can diagnose the mass unbalance and aerodynamic asymmetry of the blades is proposed. Proposed diagnostic algorithm utilizes both FFT(Fast Feurier Transform) of the signal from accelerometers installed inside of nacelle and simple diagnostic logic. Furthermore, to verify the applicability of the proposed system, 3W small sized wind turbine system is tested and physical experiments are carried out.

The Experimental and Basic Study on Torsional Vibration of Horizontal Rotating Shaft using a Laser Measuring Equipment (레이저 계측기를 이용한 축의 비틀림 진동에 관한 실험적 기초 연구)

  • Park, I.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • In this study, the nose of cam in the automobile engine was modelled into circular disk to analyze the torsional vibration of the cam shaft. The distance between disks was fixed, but the diameter of disks was changed. The torsional vibration of the cam shaft was studied experimentally by the motion of the modelled disk with changing the disk diameter. And the sizes of the modelled disk were selected not to show the natural frequencies over all the experimental ranges. The torsional vibration meter used in this study has a laser system with non-contact measurement method, which can measure both torsional angular vibration velocity and torsional angular vibration displacement simultaneously. The Experimental analysis shows that the characteristics of the torsional vibration in the horizontal rotating shaft can be considerably affected by the arrangement of the modelled disks.

  • PDF

A Study on Analysis of Beat Spectra in a Radar System (레이다 시스템에서의 비트 스펙트럼 분석에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2187-2193
    • /
    • 2010
  • A specific radar system can be implemented more easily using the frequency modulated continuous wave comparing with the pulse Doppler radar. It also has the advantage of LPI (low probability of interception) because of the low power and wide bandwidth characteristics. These radars are usually used to cover the short range area and to obtain the high resolution measurements of the target range and velocity information. The transmitted waveform is used in the mixer to demodulate the received echo signal and the resulting beat signal can be obtained. This beat signal is analyzed using the FFT method for the purpose of clutter removal, detection of a target, extraction of velocity and range information, etc. However, for the case of short signal acquisition time, this FFT method can cause the serious leakage effect which disables the detection of weaker echo signals masked by strong side lobes of the clutter. Therefore, in this paper, the weighting window method is analyzed to suppress the strong side lobes while maintaining the proper main lobe width. Also, the results of FFT beat spectrum analysis are shown under various environments.

Stability analysis of the rotating and stationary grooved journal bearings (정지홈과 회전홈을 갖는 저널베어링의 안정성 평가)

  • Lee, M.H.;Lee, J.H.;Jang, G.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.141-146
    • /
    • 2013
  • This research investigates the stability analysis for the rotating and the stationary grooved journal bearing. The dynamic coefficients of the journal bearing are calculated by using FEM and the perturbation method. When journal bearing is in whirling motion, the dynamic coefficients have time-varying components as a sine wave due to the reaction force of oil film toward the center of journal even in the steady state. The solutions for the equations of motion can be assumed as the Fourier series expansion. The equations of motion can be rewritten as the linear algebraic equations with respect to the Fourier coefficients. Then, stability of the grooved journal bearing can be calculated by Hill's infinite determinant. The periodic function of dynamic coefficients is derived using Fourier Fast Transform(FFT).The stability of journal bearing is determined as rotating speed increases and the stability of rotating grooved journal bearing is compared and discussed with the stability of stationary grooved journal bearing.

  • PDF

Evaluation of Combustion Instability in a Model Gas Turbine Adopting Flame Transfer Function and Dynamic Mode Decomposition (화염 전달함수 및 DMD 기법을 이용한 모형 가스터빈의 연소불안정성 평가)

  • Son, Jinwoo;Sohn, Chae Hoon;Yoon, Jisu;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • To evaluate the combustion instability of a gas turbine combustor, the DMD technique was applied. The mode frequency results for each fuel composition were compared with FFT(Fast Fourier Transform) results. The damping coefficient, which is a quantitative parameter for combustion instability, was evaluated for 5 experimental cases. The flame transfer function (FTF) was calculated in the most unstable test case. In deriving the FTF, gain and phase were calculated using DMD technique. As a result of the analysis of the OH radical perturbation of the DMD, the heat release fluctuation was the highest at 100 Hz, at which the highest value of gain is observed. The frequency of FFT and FTF were different. In order to clarify the reason for this, FTF for various resonance frequencies was performed and it shows that the pattern of gain was similar to FFT.

A Study on Dynamic Characteristics and Durability of Multi-joint Boom for Demolition Water Vehicle (파괴방수차 다관절 붐의 동특성 및 내구성에 관한 연구)

  • Kim, Jin-Soo;So, Soo-Hyun;Lim, Su-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4769-4775
    • /
    • 2014
  • This paper discusses the dynamics stress of each boom, which occurs as a result of the conflicts on a multi-joint boom at the end effector and structure. In this process, CATIA was applied to create 3D modeling, ADAMS and ANSYS were then performed using mesh analysis by obtaining the stress data to create a MNF(Modal Neutral File) of multi-joint boom. Two types of MNF models were analyzed using ADAMS FFT(Fast Fourier Transform) performing to check the validity of each model. In this process, the models were verified by ADAMS, which performs the dynamic characteristics of conflict. The ADAMS Durability was used to analyze the maximum stress between the multi-joint boom and structure.