• Title/Summary/Keyword: FFT필터

Search Result 124, Processing Time 0.018 seconds

A Study on the Crustal Structure of the Southern Korean Peninsula through Gravity Analysis (중력자료분석을 통한 한반도 지각구조에 관한 연구)

  • Kwon, Byung Doo;Yang, Su Yeong
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.309-320
    • /
    • 1985
  • The crustal structure of the southern part of the Korean peninsula has been investigated based on the results of processing and anlaysis of gravity data. The processing techniques involve i) seperation of regional and residual anomalies by polynomial fittings, ii) power spectral analyses to determine the mean depth to the crustal base, iii) a filtering operation called "high-cut filtering and resampling," and iv) downward continuation to determine the undulation of the crustal base. The Bouguer anomalies show a lineation in the NE-SW direction which is the same as that of most mountains and tectonic lines of this area. The mean crustal depth is found to be 34km. The depth of the crustal base is varying in the estimated range of 26km to 36km with a thinner crust below the east coast than that of the west coast. The relief of the crustal base is appeared to be correlated with the regional surface topography. The linear regression relations computed between elevations and gravity anomalies indicate that the crust of this area seems to be not in perfect isostatic equilibrium but a little undercompensated state.

  • PDF

Seismic Performance-Based Design for Breakwater (방파제의 성능기반 내진설계법)

  • Kim, Young-Jun;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.91-101
    • /
    • 2022
  • The 1995 Kobe earthquake caused a massive damage to the Port of Kobe. Therefore, it was pointed out that it was impossible to design port structures for Level II (Mw 6.5) earthquakes with quasi-static analysis and Allowable Stress Design methods. In Japan and the United States, where earthquakes are frequent, the most advanced design standards for port facilities are introduced and applied, and the existing seismic design standards have been converted to performance-based design. Since 1999, the Korean Port Seismic Design Act has established a definition of necessary facilities and seismic grades through research on facilities that require seismic design and their seismic grades. It has also established a performance-based seismic design method based on experimental verification. In the performance-based seismic design method of the breakwater proposed in this study, the acceleration time history on the surface of the original ground was subjected to a fast Fourier transform, followed by a filter processing that corrected the frequency characteristics corresponding to the maximum allowable displacement with respect to performance level of the breakwater and the filtered spectrum. The horizontal seismic coefficient for the equivalent static analysis considering the displacement was calculated by inversely transforming (i.e., subjected to an inverse fast Fourier transform) into the acceleration time history and obtaining the maximum acceleration value. In addition, experiments and numerical analysis were performed to verify the performance-based seismic design method of breakwaters suitable for domestic earthquake levels.

Development of an Electro Impedance Spectroscopy device for EDLC super capacitor characterization in a mass production line (EDLC 슈퍼 캐피시터 특성 분석을 위한 양산용 전기화학 분석 장치 개발)

  • Park, Chan-Hee;Lee, Hye-In;Kim, Sang-Jung;Lee, Jung-Ho;Kim, Sung-Jin;Lee, Hee-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5647-5654
    • /
    • 2012
  • In this paper, we developed an electro impedance spectroscopy (EIS) device, which are primarily used for the analysis of fuel cells or batteries, to widen its coverage to the next generation super capacitor EDLC characterization. The developed system was composed of a signal generator that can generate various signal patterns, a potentiostatic generator, and a high speed digital filter for signal processing and measurement program. The developed system is portable, which is not only suitable laboratory use but also for mass production line. The special features of the system include a patterned output signal from 0.01 to 20 kHz, and a fast Fourier transform (FFT) analysis of current signals, both of which are acquired simultaneously. Our tests showed similar results after comparing the analysis from our newly-developed device showing the characteristics of EDLC complex impedance and the analysis from an equivalent impedance which was applied to an equivalent circuit. Now, we can expect a fast inspection time from the application of the present system to the super capacitor production line, based on time-varying changes in electrochemical impedance.

The Flow-rate Measurements in a Multi-phase Flow Pipeline by Using a Clamp-on Sealed Radioisotope Cross Correlation Flowmeter (투과 감마선 계측신호의 Cross correlation 기법 적용에 의한 다중상 유체의 유량측정)

  • Kim, Jin-Seop;Kim, Jong-Bum;Kim, Jae-Ho;Lee, Na-Young;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • The flow rate measurements in a multi-phase flow pipeline were evaluated quantitatively by means of a clamp-on sealed radioisotope based on a cross correlation signal processing technique. The flow rates were calculated by a determination of the transit time between two sealed gamma sources by using a cross correlation function following FFT filtering, then corrected with vapor fraction in the pipeline which was measured by the ${\gamma}$-ray attenuation method. The pipeline model was manufactured by acrylic resin(ID. 8 cm, L=3.5 m, t=10 mm), and the multi-phase flow patterns were realized by an injection of compressed $N_2$ gas. Two sealed gamma sources of $^{137}Cs$ (E=0.662 MeV, ${\Gamma}$ $factor=0.326\;R{\cdot}h^{-1}{\cdot}m^2{\cdot}Ci^{-1}$) of 20 mCi and 17 mCi, and radiation detectors of $2"{\times}2"$ NaI(Tl) scintillation counter (Eberline, SP-3) were used for this study. Under the given conditions(the distance between two sources: 4D(D; inner diameter), N/S ratio: $0.12{\sim}0.15$, sampling time ${\Delta}t$: 4msec), the measured flow rates showed the maximum. relative error of 1.7 % when compared to the real ones through the vapor content corrections($6.1\;%{\sim}9.2\;%$). From a subsequent experiment, it was proven that the closer the distance between the two sealed sources is, the more precise the measured flow rates are. Provided additional studies related to the selection of radioisotopes their activity, and an optimization of the experimental geometry are carried out, it is anticipated that a radioisotope application for flow rate measurements can be used as an important tool for monitoring multi-phase facilities belonging to petrochemical and refinery industries and contributes economically in the light of maintenance and control of them.