• Title/Summary/Keyword: FFD

Search Result 69, Processing Time 0.025 seconds

Control Net Generation for Parametric control of freeform shape (자유형상의 파라메트릭 변형을 위한 조정 다각형 생성)

  • 박현풍;이관행
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.667-669
    • /
    • 2003
  • 특징 형상의 조합으로 표현될 수 없는 자유 형상을 가진 제품이 늘어남에 따라 자유형상을 효율적으로 변형시키는 기법이 필요하다. 여러 가지 자유형상 변형기법(FFD) 가운데에서 자유 형상을 파라메트릭하게 컨트롤하기 위해서는 조정 다각형 기반의 형상 변형 기법이 적합하다. 이에 따라 본 연구에서는 FFD 기법을 적용하여 자유형상 모델을 파라메트릭하게 컨트롤하기 위해 입력 모델에 대한 조정 다각형을 자동으로 생성하는 알고리즘을 제안하였다. 제안된 알고리즘은 크게 기본 조정 다각형 생성과 조정 다각형 최적화 단계로 나누어진다. 기본 다각형 생성에서는 1)입력모델을 직교 3방향에 투영, 2)투영된 결과에 대해 2차원 조정 다각형을 생성, 3)2차원 조정 다각형을 조합하여 3차원 기본 조정 다각형 생성의 단계를 거친다. 조정 다각형 최적화 단계에서는 기본 조정 다각형에 에지 및 면 연산자를 적용하여 입력 모델에 더욱 근사하는 최종 조정 다각형을 생성한다. 예제에서는 제안된 알고리즘을 통해 자동으로 생성된 조정다각형을 자동차 모델에 적용하여 모델의 형상을 변화시킨 결과를 보였다.

  • PDF

The Asymptotic Worst-Case Ratio of the Bin Packing Problem by Maximum Occupied Space Technique

  • Ongkunaruk, Pornthipa
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.126-132
    • /
    • 2008
  • The bin packing problem (BPP) is an NP-Complete Problem. The problem can be described as there are $N=\{1,2,{\cdots},n\}$ which is a set of item indices and $L=\{s1,s2,{\cdots},sn\}$ be a set of item sizes sj, where $0<sj{\leq}1$, ${\forall}j{\in}N$. The objective is to minimize the number of bins used for packing items in N into a bin such that the total size of items in a bin does not exceed the bin capacity. Assume that the bins have capacity equal to one. In the past, many researchers put on effort to find the heuristic algorithms instead of solving the problem to optimality. Then, the quality of solution may be measured by the asymptotic worst-case ratio or the average-case ratio. The First Fit Decreasing (FFD) is one of the algorithms that its asymptotic worst-case ratio equals to 11/9. Many researchers prove the asymptotic worst-case ratio by using the weighting function and the proof is in a lengthy format. In this study, we found an easier way to prove that the asymptotic worst-case ratio of the First Fit Decreasing (FFD) is not more than 11/9. The proof comes from two ideas which are the occupied space in a bin is more than the size of the item and the occupied space in the optimal solution is less than occupied space in the FFD solution. The occupied space is later called the weighting function. The objective is to determine the maximum occupied space of the heuristics by using integer programming. The maximum value is the key to the asymptotic worst-case ratio.

Statistical Optimization of the Growth Factors for Chaetoceros neogracile Using Fractional Factorial Design and Central Composite Design

  • Jeong, Sung-Eun;Park, Jae-Kweon;Kim, Jeong-Dong;Chang, In-Jeong;Hong, Seong-Joo;Kang, Sung-Ho;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1919-1926
    • /
    • 2008
  • Statistical experimental designs; involving (i) a fractional factorial design (FFD) and (ii) a central composite design (CCD) were applied to optimize the culture medium constituents for production of a unique antifreeze protein by the Antartic micro algae Chaetoceros neogracile. The results of the FFD suggested that NaCl, KCl, $MgCl_2$, and ${Na}_{2}{SiO}_{3}$ were significant variables that highly influenced the growth rate and biomass production. The optimum culture medium for the production of an antifreeze protein from C. neogracile was found to be Kalle's artificial seawater, pH of $7.0{\pm}0.5$, consisting of 28.566 g/l of NaCl, 3.887 g/l of $MgCl_2$, 1.787 g/l of $MgSO_4$, 1.308 g/l of $CaSO_4$, 0.832 g/l of ${K_2}{SO_4}$, 0.124 g/l of $CaCO_3$, 0.103 g/l of KBr, 0.0288 g/l of $SrSO_4$, and 0.0282 g/l of ${H_3}{BO_3}$. The antifreeze activity significantly increased after cells were treated with cold shock (at $-5^{\circ}C$) for 14 h. To the best of our knowledge, this is the first report demonstrating an antifreeze-like protein of C. neogracile.

A NOTE ON ASCEND AND DESCEND OF FACTORIZATION PROPERTIES

  • Shah Tariq
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.419-424
    • /
    • 2006
  • In this paper we extend the study of ascend and descend of factorization properties (for atomic domains, domains satisfying ACCP, bounded factorization domains, half-factorial domains, pre-Schreier and semirigid domains) to the finite factorization domains and idf-domains for domain extension $A\;{\subseteq}\;B$.

Energy Efficiency Routing Algorithm for Vessel Ubiquitous Sensor Network Environments (선박 USN에서 에너지 효율성을 위한 라우팅 알고리즘)

  • Choi, Myeong-Soo;Pyo, Se-Jun;Lee, Jin-Seok;Yoon, Seok-Ho;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.557-565
    • /
    • 2011
  • In this paper, we assume that sensor nodes organize the multi-hop networks, are fixed, and operate as full function devices(FFD). The wireless sensor network(WSN) only consists of mobile nodes without the assistance from the fixed infrastructure, which increases the flexibility of the network. However, it is difficult to perform routing in the WSN, since sensor nodes freely join in and drop out of the network, and some sensor nodes have very low power. We propose the algorithm combining routing schemes based on the bitmap and cluster methods in this paper. Through computer simulations, we show the validity of the proposed algorithm.

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

Characteristics of Tool Wear and Surface Roughness using for Hybrid Lubrication in Micro-Milling Process of Flexible Fine Die (플렉서블 양각금형의 마이크로 밀링가공에서 하이브리드 윤활공정에 따른 공구마멸과 표면조도 특성)

  • Kim, Min-Wook;Ryu, Ki-Teak;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.30-36
    • /
    • 2013
  • An FFD(flexible fine die) is an embossed mold that consists of a thin plate ranging from 0.6 to 3 mm in thickness. FFDs are primarily used for cutting LCD films and F-PCB sheets. In the high-speed micro-milling process of flexible fine dies, the lubrication and cooling of the cutting edges is very important from the aspect of eco machining and cutting performance. In this paper, a comparative study of tool wear and surface roughness between cutting fluid and hybrid lubrication for eco-machining of FFD was conducted for processes of high-speed machining of highly hardened material (STC5, HRC52). Especially, the incorporated fluid method for eco machining, in which the cutting performances can be simultaneously measured, was introduced. The machining results show that hybrid lubrication, instead of conventional cutting fluid, leads to excellent tool wear and surface roughness and represents the proper conditions for eco micro-machining of flexible fine dies.

A Development of Experimental Model Prediction of Leakage Pressure in MPW (전자기 펄스 용접시 누수압력을 예측하기 위한 실험모델의 개발)

  • Shim, Ji-Yeon;Kim, Ill-Soo;Kim, In-Ju;Kang, Bong-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.652-657
    • /
    • 2009
  • MPW(Magnetic Pulse Welding) is a technologies for welding of metals by means of repulsive force on account of the interaction between electro-magnetic field of coil and current induced in outer pipe. These MPW is one of the most useful welding process of welding ability of the dissimilar metal in which cylindrical materials, such as pipe, tube. As the quality of a weld joint is strongly influenced by process parameters during the welding process and the success of the welding to evaluated according to the leakage pressure. Generally, the process parameters is magnetic pressure, the gap between outer pipe and inner pipe, and the ratio of thickness to diameter of pipe(D/T) in MPW. Therefore, the goal of this study was to explain the effect of parameters on the weld joint leakage pressure. For these purposes, FFD(Fractional Factorial Design) were used for the experiment. The measured data were analyzed by regression analysis and verification experiments with random condition were conducted to confirm the suggested experimental model.

  • PDF

The Effects of Static Hamstring Stretching on Hip Motion and Lumbo-Pelvic Kinematics

  • Oh, Jaeseop;Kang, Minhyeok
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.3
    • /
    • pp.2102-2106
    • /
    • 2020
  • Background: Static hamstring stretching exercises have been widely used to improve flexibility of the hamstring muscles. However, few studies have examined the influence of standing static hamstring stretching (e.g., jack-knife stretching) on movements of the lumbopelvic-hip complex. Objectives: To examine the short-term effects of jack-knife stretching on movements of the lumbopelvic-hip complex. Design: Case series. Methods: Fourteen participants with hamstring tightness (8 male, 6 female) were recruited. Participants performed jack-knife stretching for 150 s. Before and after stretching, participants performed the finger-to-floor distance (FFD), sit and reach (SRT), active knee extension (AKE), passive straight leg raising (PSLA), and active straight leg raising (ASLR) tests as well as pelvic tilt while standing to identify the effects of stretching. Results: There were significant improvements in the FFD, SRT, AKE, PSLA, and ASLR tests after stretching. However, pelvic tilt angle while standing did not significantly change. Conclusion: Jack-knife stretching can be a useful exercise to improve flexibility of the hamstring muscles, but not pelvic alignment while standing.

Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization

  • Wang, Xinjing;Song, Baowei;Wang, Peng;Sun, Chunya
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.730-740
    • /
    • 2018
  • Hydrofoil is the direct component to generate thrust for underwater glider. It is significant to improve propulsion efficiency of hydrofoil. This study optimizes the shape of a hydrofoil using Free-Form Deformation (FFD) parametric approach and Surrogate-based Optimization (SBO) algorithm. FFD approach performs a volume outside the hydrofoil and the position changes of control points in the volume parameterize hydrofoil's geometric shape. SBO with adaptive parallel sampling method is regarded as a promising approach for CFD-based optimization. Combination of existing sampling methods is being widely used recently. This paper chooses several well-known methods for combination. Investigations are implemented to figure out how many and which methods should be included and the best combination strategy is provided. As the hydrofoil can be stretched from airfoil, the optimizations are carried out on a 2D airfoil and a 3D hydrofoil, respectively. The lift-drag ratios are compared among optimized and original hydrofoils. Results show that both lift-drag-ratios of optimized hydrofoils improve more than 90%. Besides, this paper preliminarily explores the optimization of hydrofoil with root-tip-ratio. Results show that optimizing 3D hydrofoil directly achieves slightly better results than 2D airfoil.