• 제목/요약/키워드: FERET Database

검색결과 15건 처리시간 0.027초

FERET DATA SET에서의 PCA와 ICA의 비교

  • Kim, Sung-Soo;Moon, Hyeon-Joon;Kim, Jaihie
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2355-2358
    • /
    • 2003
  • The purpose of this paper is to investigate two major feature extraction techniques based on generic modular face recognition system. Detailed algorithms are described for principal component analysis (PCA) and independent component analysis (ICA). PCA and ICA ate statistical techniques for feature extraction and their incorporation into a face recognition system requires numerous design decisions. We explicitly state the design decisions by introducing a modular-based face recognition system since some of these decision are not documented in the literature. We explored different implementations of each module, and evaluate the statistical feature extraction algorithms based on the FERET performance evaluation protocol (the de facto standard method for evaluating face recognition algorithms). In this paper, we perform two experiments. In the first experiment, we report performance results on the FERET database based on PCA. In the second experiment, we examine performance variations based on ICA feature extraction algorithm. The experimental results are reported using four different categories of image sets including front, lighting, and duplicate images.

  • PDF

특징점기반 Gabor 및 LBP 피쳐를 이용한 얼굴 인식 (Face Recognition by Fiducial Points Based Gabor and LBP Features)

  • 김진호
    • 한국콘텐츠학회논문지
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2013
  • 얼굴 영상 데이터베이스에서 제공하는 눈 좌표에 의존해서 부분 자동 얼굴 인식 알고리즘을 설계 구현하면 실 환경 얼굴 인식 시스템에서는 눈 좌표 추출 알고리즘의 정확도에 따라 인식 성능이 달라질 수 있다. 본 논문에서는 얼굴의 눈, 코, 입 및 윤곽선 정보를 바탕으로 설정한 특징점 기반의 얼굴 모델 그래프를 생성하여 얼굴 영상에 정합시키고 각 특징점에서 Gabor 및 LBP 피쳐를 추출해서 결합하는 방식의 완전 자동 얼굴 인식 알고리즘을 제안하였다. 본 알고리즘에서는 완전 자동으로 얼굴 영상에 얼굴 모델 그래프를 맞출 뿐만 아니라 기존의 Gabor 피쳐에 LBP 피쳐를 추가함으로써 인식 성능을 극대화 시킬 수 있도록 하였다. 제안한 알고리즘을 FERET 데이터베이스에 적용해 본 결과 1,000명 이상의 얼굴을 실시간으로 인식할 수 있었고 각 데이터 집합에 대해서 우수한 인식 성능을 얻을 수 있었다.

얼굴인식을 위한 어파인 불변 지역 서술자 (Affine Invariant Local Descriptors for Face Recognition)

  • 고용빈;이효종
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권9호
    • /
    • pp.375-380
    • /
    • 2014
  • 오늘날 촬영 상황을 조절할 수 있는 환경, 즉 고정된 촬영각이나 일관된 조도 조건에서는 얼굴인식 기술 수준은 신뢰할 수 있을 정도로 높다. 그러나 복잡한 현실에서의 얼굴 인식은 여전히 어려운 과제이다. SIFT 알고리즘은 촬영각의 변화가 미미할 때에 한하여, 크기와 회전 변화에 무관하게 우수한 성능을 보여주고 있다. 본 논문에서는 다양하게 촬영각이 변하는 환경에서도 얼굴 인식을 할 수 있는 어파인 불변 지역 서술자를 탐지하는 ASIFT(Affine SIFT)라는 알고리즘을 적용하였다. SIFT 알고리즘을 확장하여 만든 ASIFT 알고리즘은 촬영각 변화에 취약한 단점을 극복하였다. 제안하는 방법에서 ASIFT 알고리즘은 표본 이미지에, SIFT 알고리즘은 검증 이미지에 적용하였다. ASIFT 방법은 어파인 변환을 사용하여 다양한 시각에 따른 영상을 생성할 수 있기 때문에 ASIFT 알고리즘은 저장 영상과 실험 영상의 시각 차이에 따른 문제를 해결할 수 있었다. 실험결과 FERET 데이터를 사용했을 때 제안한 방법은 촬영각의 변화가 큰 경우에 기존의 시프트 알고리즘보다도 높은 인식률을 보여주었다.

프로젝션 함수와 허프 변환을 이용한 눈동자 중심점 찾기 (Detection of Pupil Center using Projection Function and Hough Transform)

  • 최연석;문원호;김철기;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 추계학술대회
    • /
    • pp.167-170
    • /
    • 2010
  • 본 논문에서는 프로젝션 함수와 허프 변환을 이용하여 영상에서 눈동자를 찾는 방법을 제안한다. 먼저, 영상으로부터 얼굴영역을 추출한 다음, 눈썹과 눈동자의 밝기변화의 특징을 이용할 수 있는 integral projection function과 variance projection function을 사용하여 눈 영역을 검출한다. 검출된 눈 영역에서 눈동자 중심좌표를 구하기 위해 원형 허프 변환을 이용한다. 원형 허프 변환에 사용된 좌표는 sobel edge mask를 사용하여 구한다. FERET database의 정면 얼굴 영상을 이용하여 제안된 방법으로 실험한 결과 만족할 만한 결과가 나왔다.

  • PDF

객체검출을 위한 빠르고 효율적인 Haar-Like 피쳐 선택 알고리즘 (A Fast and Efficient Haar-Like Feature Selection Algorithm for Object Detection)

  • 정병우;박기영;황선영
    • 한국통신학회논문지
    • /
    • 제38A권6호
    • /
    • pp.486-491
    • /
    • 2013
  • 본 논문은 객체검출(object detection)에 사용되는 분류기의 학습을 위한 빠르고 효율적인 Haar-like feature 선택 알고리듬을 제안한다. 기존 AdaBoost를 이용한 Haar-like feature 선택 알고리듬은 학습 샘플들에 대한 피쳐의 에러만을 고려하여 형태적으로 유사하거나 중복되는 피쳐가 선택되는 경우가 많았다. 제안하는 알고리듬은 피쳐의 형태와 피쳐간의 거리로부터 피쳐의 유사도를 계산하고 이미 선택된 피쳐와 유사도가 큰 피쳐들을 피쳐 세트에서 제거하여 빠르고 효율적인 피쳐 선택이 이루어지도록 하였다. FERET 얼굴 데이터베이스를 사용하여 제안된 알고리듬을 사용하여 학습시킨 분류기와 기존 알고리듬을 사용한 분류기의 성능을 비교하였다. 실험 결과 제안한 피쳐 선택 방법을 사용하여 학습시킨 분류기가 기존 방법을 사용한 분류기보다 향상된 성능을 보였으며, 동일한 성능을 갖도록 학습시켰을 경우 분류기의 피쳐 수가 20% 감소하였다.

가버 피쳐기반 얼굴 그래프를 이용한 완전 자동 안면 인식 알고리즘 (Fully Automatic Facial Recognition Algorithm By Using Gabor Feature Based Face Graph)

  • 김진호
    • 한국콘텐츠학회논문지
    • /
    • 제11권2호
    • /
    • pp.31-39
    • /
    • 2011
  • 가버 웨이브릿을 이용한 얼굴 그래프기반 안면 인식 알고리즘들은 우수한 인식 성능을 갖고 있지만 계산양이 많고 초기 그래프 위치에 따라 성능이 달라지는 등의 문제점들이 있다. 본 연구에서는 이를 개선하여 가버 피쳐기반 기하학적 가변형 얼굴 그래프 매칭방식을 이용한 완전 자동 안면 인식 알고리즘을 제안하였다. Adaboost를 이용해서 얼굴을 검출하고 얼굴 그래프의 초기 정합 위치와 크기를 결정하였다. 얼굴 그래프를 기하학적으로 가변시켜 가면서 얼굴 모델 그래프와 유사도가 가장 높은 얼굴 그래프를 고속으로 찾기 위해 매개변수들을 정의하고 최적화 알고리즘을 이용하여 최적 얼굴 그래프를 추출하였다. 제안한 알고리즘을 FERET 데이터베이스의 인식에 적용해 본 결과 96.7%의 인식률로서 기존 연구들에 비해 우수한 결과를 얻을 수 있었고 평균 0.26초의 인식 속도로서 실시간 적용이 가능함을 확인하였다.

Efficient Eye Location for Biomedical Imaging using Two-level Classifier Scheme

  • Nam, Mi-Young;Wang, Xi;Rhee, Phill-Kyu
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.828-835
    • /
    • 2008
  • We present a novel method for eye location by means of a two-level classifier scheme. Locating the eye by machine-inspection of an image or video is an important problem for Computer Vision and is of particular value to applications in biomedical imaging. Our method aims to overcome the significant challenge of an eye-location that is able to maintain high accuracy by disregarding highly variable changes in the environment. A first level of computational analysis processes this image context. This is followed by object detection by means of a two-class discrimination classifier(second algorithmic level).We have tested our eye location system using FERET and BioID database. We compare the performance of two-level classifier with that of non-level classifier, and found it's better performance.

Viewpoint Unconstrained Face Recognition Based on Affine Local Descriptors and Probabilistic Similarity

  • Gao, Yongbin;Lee, Hyo Jong
    • Journal of Information Processing Systems
    • /
    • 제11권4호
    • /
    • pp.643-654
    • /
    • 2015
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we propose using the combination of Affine Scale Invariant Feature Transform (SIFT) and Probabilistic Similarity for face recognition under a large viewpoint change. Affine SIFT is an extension of SIFT algorithm to detect affine invariant local descriptors. Affine SIFT generates a series of different viewpoints using affine transformation. In this way, it allows for a viewpoint difference between the gallery face and probe face. However, the human face is not planar as it contains significant 3D depth. Affine SIFT does not work well for significant change in pose. To complement this, we combined it with probabilistic similarity, which gets the log likelihood between the probe and gallery face based on sum of squared difference (SSD) distribution in an offline learning process. Our experiment results show that our framework achieves impressive better recognition accuracy than other algorithms compared on the FERET database.

Affine Local Descriptors for Viewpoint Invariant Face Recognition

  • Gao, Yongbin;Lee, Hyo Jong
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.781-784
    • /
    • 2014
  • Face recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we use Affine SIFT to detect affine invariant local descriptors for face recognition under large viewpoint change. Affine SIFT is an extension of SIFT algorithm. SIFT algorithm is scale and rotation invariant, which is powerful for small viewpoint changes in face recognition, but it fails when large viewpoint change exists. In our scheme, Affine SIFT is used for both gallery face and probe face, which generates a series of different viewpoints using affine transformation. Therefore, Affine SIFT allows viewpoint difference between gallery face and probe face. Experiment results show our framework achieves better recognition accuracy than SIFT algorithm on FERET database.

The Robust Derivative Code for Object Recognition

  • Wang, Hainan;Zhang, Baochang;Zheng, Hong;Cao, Yao;Guo, Zhenhua;Qian, Chengshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.272-287
    • /
    • 2017
  • This paper proposes new methods, named Derivative Code (DerivativeCode) and Derivative Code Pattern (DCP), for object recognition. The discriminative derivative code is used to capture the local relationship in the input image by concatenating binary results of the mathematical derivative value. Gabor based DerivativeCode is directly used to solve the palmprint recognition problem, which achieves a much better performance than the state-of-art results on the PolyU palmprint database. A new local pattern method, named Derivative Code Pattern (DCP), is further introduced to calculate the local pattern feature based on Dervativecode for object recognition. Similar to local binary pattern (LBP), DCP can be further combined with Gabor features and modeled by spatial histogram. To evaluate the performance of DCP and Gabor-DCP, we test them on the FERET and PolyU infrared face databases, and experimental results show that the proposed method achieves a better result than LBP and some state-of-the-arts.