• Title/Summary/Keyword: FEM study

Search Result 3,305, Processing Time 0.036 seconds

Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets (알루미늄 합금과 고장력 강판 접합을 위한 헬리컬 SPR의 설계)

  • Kim, W.Y.;Kim, D.B.;Park, J.G.;Kim, D.H.;Kim, K.H.;Lee, I.H.;Cho, H.Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.735-742
    • /
    • 2014
  • A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

A Study of Vertical Axis Wind Turbine by Simulation (시뮬레이션을 통한 수직축 풍력발전에 관한 연구)

  • Park, Jung-Cheul;Won, Woo-Yeon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.241-245
    • /
    • 2018
  • This paper designed the main blade in V-shape and tried to identify the best design conditions by changing the main blade angle and wind speed. When the main blade open angle was maintained at $120^{\circ}$ and the sample2 with an angle changed by $30^{\circ}$ was compared with the sample3 changed by $60^{\circ}$, the power output of sample2 was 3.8[kW], the power coefficient was 0.12, and the power output of sample3 was 6.0[kW], the power coefficient was measured as 0.18. So the power output of sample 3 was 58% higher than that of sample2, and the power coefficient was increased by 50%. The power coefficient was 0.18 and the wind speed was changed to 10[m/s] at 6.0[kW] at wind speed of 7[m/s] by fixing main blade open angle of $120^{\circ}$ and angle of $60^{\circ}$. The output was measured at 7.7[kW] and the power coefficient at 0.23. When the wind speed was high, the power output increased by 28% and the power coefficient increased by 83%. Also, sample4 was 103% higher in output and 92% more in efficiency than sample2.

A Numerical Simulation of Hydrodynamic Interactions Between Two Moored Barges with Regular Waves (규칙파 중 계류된 두 바지선의 유체역학적 상호작용에 관한 수치시뮬레이션)

  • Lee, Sang-Do;Bae, Byung-Deug;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.615-624
    • /
    • 2016
  • In this study, two rectangular barges in close proximity were simulated to analyze the characteristics of motion responses due to hydrodynamic interactions. Using a numerical solution from DNV-GL SESAM, coupled stiffness matrix terms for these same FEM models were added to the multiple body modes in the surge direction. Potential theory was used to calculate the first order radiation and diffraction effects on the simulated barge models. In the results, the sheltering effect of the barges was not shown at 1.3 rad/s with hull separation of 20 m in transverse waves. The separation effect between the barges was more clear with longitudinal waves and a shallow water depth. However, sway forces were influenced by hull separation with transverse waves. The peaks for sway and heave motion and sway force occurred at higher frequencies as hull separation narrowed with longitudinal and transverse waves. Given a depth of 10 m, the sway motion on the lee side of a coupled barge made a significant difference in the range of 0.2-0.8 rad/s with transverse and oblique waves. Also, the peaks for sway force were situated at lower frequencies, even when incident waves changed.

Model for predicting ground surface settlement by field measuring and numerical analysis in shield TBM tunnel (현장계측과 수치해석에 의한 쉴드TBM 터널의 지표침하 예측모델)

  • Kim, Seung-Chul;Ahn, Sung-Youll;Lee, Song;Noh, Tae-Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.271-287
    • /
    • 2013
  • In this study, more convenient model(S-model) for predicting ground surface settlement is developed through comparing field monitoring data of the domestic subway applied shield TBM method with conventional equation & numerical analysis. Sample stations are chosen from whole of excavation section and lateral & vertical ground surface settlement characteristic with excavation are analysed. Based on analysis result, through the comparison with actual monitoring data, the model that is possible to compute maximum surface settlement and settlement influence area is suggested with assumption that lateral surface settlement forms are composed relaxed zone and elastic zone. In addition, vertical ground surface settlement patterns with excavation are similar to cubic-function and S-model with assumption that coefficients are function of tunnel diameter and depth is suggested. Consequently, the ground surface settlement patterns are significantly similar to actual monitoring data and numerical method result. Thus, as a result, when tunnels are excavated using sheild TBM through rather soft weathered soil & rock layer, prediction of ground surface settlement with excavation using convenient S-model is practicable.

Effects of Screw Configuration on Biomechanical Stability during Extra-articular Complex Fracture Fixation of the Distal Femur Treated with Locking Compression Plate (잠김 금속판(LCP-DF)을 이용한 대퇴골 원위부의 관절외 복합골절 치료시 나사못 배열에 따른 생체역학적 안정성 분석)

  • Kwon, Gyeong-Je;Jo, Myoung-Lae;Oh, Jong-Keon;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.199-209
    • /
    • 2010
  • The locking compression plates-distal femur(LCP-DF) are being widely used for surgical management of the extra-articular complex fractures of the distal femur. They feature locking mechanism between the screws and the screw holes of the plate to provide stronger fixation force with less number of screws than conventional compression bone plate. However, their biomechanical efficacies are not fully understood, especially regarding the number of the screws inserted and their optimal configurations. In this study, we investigated effects of various screw configurations in the shaft and the condylar regions of the femur in relation to structural stability of LCP-DF system. For this purpose, a baseline 3-D finite element (FE) model of the femur was constructed from CT-scan images of a normal healthy male and was validated. The extra-articular complex fracture of the distal femur was made with a 4-cm defect. Surgical reduction with LCP-DF and bone screws were added laterally. To simulate various cases of post-op screw configurations, screws were inserted in the shaft (3~5 screws) and the condylar (4~6 screws) regions. Particular attention was paid at the shaft region where screws were inserted either in clustered or evenly-spaced fashion. Tied-contact conditions were assigned at the bone screws-plate whereas general contact condition was assumed at the interfaces between LCP-DF and bone screws. Axial compressive load of 1,610N(2.3 BW) was applied on the femoral head to reflect joint reaction force. An average of 5% increase in stiffness was found with increase in screw numbers (from 4 to 6) in the condylar region, as compared to negligible increase (less than 1%) at the shaft regardless of the number of screws inserted or its distribution, whether clustered or evenly-spaced. At the condylar region, screw insertion at the holes near the fracture interface and posterior locations contributed greater increase in stiffness (9~13%) than any other locations. Our results suggested that the screw insertion at the condylar region can be more effective than at the shaft during surgical treatment of fracture of the distal femur with LCP-DF. In addition, screw insertion at the holes close to the fracture interface should be accompanied to ensure better fracture healing.

Analysis of Vibration Characteristics for a Molded Dry-type Potential Transformer (몰드형 건식 계기용 변압기 진동 특성 분석)

  • Kim, Moosun;Jang, Dong Uk;Kim, Seung Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.209-214
    • /
    • 2017
  • Most of the present potential transformers of train vehicles are of the oil-type filled with insulating oil and are susceptible to problems such as explosion due to the increase in the internal pressure during train operation and poor reliability near the end of their life cycle. As a solution to this problem, it is necessary to develop a molded dry-type potential transformer with excellent pressure-resistance performance using insulating resin. In order to localize the product, the Korea Railroad Research Institute has been developing a molded dry-type potential transformer. As part of this research, it is necessary to analyze the vibration characteristics of the developed product and to check the transformer performance in a vibration environment. In this study, a resonance test and simulated long-term life test of the developed product were conducted according to the KS R 9144 and IEC 61373 standards, respectively, which are vibration test methods for railway vehicle parts. Their natural frequencies were analyzed by comparing the results of the numerical modal analysis and resonance test, in order to confirm their adherence to the standards. Also, the performance test after the simulated long-term life test confirmed that the operation of the developed transformer was not problematic even in a long-time vibration environment.

A Study on the Parameters of Design for Warpage reduction of Passive components Embedded Substrate for PoP (PoP용 패시브 소자 임베디드 기판의 warpage 감소를 위한 파라메타 설계에 관한 연구)

  • Cho, Seunghyun;Kim, Dohan;Oh, Youngjin;Lee, Jongtae;Cha, Sangsuk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.75-81
    • /
    • 2015
  • In this paper, numerical analysis by finite element method and parameter design by the Taguchi method were used to reduce warpage of a two passive components embedded double side substrate for PoP(Package on Package). The effect of thickness of circuit layers (L1, L2) and thickness of solder resist (SR_top, SR_BTM) were analyzed with 4 variations and 3 levels(minimum, average and maximum thickness) to find optimized thickness conditions. Also, paste effect of solder resist on unit area of top surface was analyzed. Finally, experiments was carried out to prove numerical analysis and the Taguchi method. Based on the numerical and experimental results, it was known that circuit layer in ball side of substrate was the most severe determining deviation for reducing warpage. Buried circuit layer in chip side, solder resist and were insignificant effects on warpage relatively. However, warpage decreased as circuit layer in ball side thickness increased but effect of solder resist and circuit layer in chip side thickness were conversely.

2 Dimensional TSP Modeling Using Finite Element Method (유한 요소법을 이용한 2차원 TSP 모델링)

  • Lee, Hong;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.13-22
    • /
    • 2003
  • TSP (Tunnel Seismic Profiling) survey is a technique for imaging and characterizing geological structures ahead of a tunnel face. The seismic modeling algorithm and the synthetic data could be helpful for TSP surveys. However, there is few algorithm to describe the propagation of the elastic waves around the tunnel. In this study, existing 2-dimensional seismic modeling algorithm using finite element method was modified to make a suitable algorithm for TSP modeling. Using this algorithm, TSP modeling was practiced in some models. And the synthetic data was analyzed to examine the propagation characteristics of the elastic waves. First of all, the modeling for the homogeneous tunnel model was practiced to examine the propagation characteristics of the direct waves in the vicinity of the tunnel. And the algorithm was applied to some models having reflector which is perpendicular or parallel to the excavation direction. From these, the propagation characteristics of the reflected waves were examined. Furthermore, two source-receiver arrays were used in respective models to investigate the properties of the two arrays. These modeling algorithm and synthetic data could be helpful in interpreting TSP survey data, developing inversion algorithm and designing new source-receiver arrays.

Structural Analysis for Constructing a Balloon Type Extracoporeal Membrane Oxygenator using CFD Analysis (CFD 해석을 이용한 Balloon형 인공심폐기 설계를 위한 구조적 해석)

  • Park, Young-Ran;Shim, Jeong-Yeon;Kim, Gi-Beum;Kim, Shang-Jin;Kang, Hyung-Sub;Kim, Jin-Shang;Kim, Min-Ho;Hong, Chul-Un;Kim, Seong-Jong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.238-243
    • /
    • 2011
  • In this study, we attempted a structural analysis in order to design a balloon type extracorporeal membrane oxygenator that can induce blood flow without using blood pumps for the purpose of complementing the weakness in the existing extracorporeal membrane oxygenator. To analyze the flow characteristic of the blood flow within the virtual model of extracorporeal membrane oxygenator, computational fluid dynamics(CFD) modeling method was used. The operating principle of this system is to make the surface of the extracorporeal membrane oxygenator keep contracting and dilating regularly by applying pressure load using a balloon, and the 'ime Function Value'that changes according to the time was applied by calculating a half cycle of sine waveform and a cycle of sine.waveform Under the assumption that the uni-directional blood flow could be induced if the balloon type extracorporeal membrane oxygenator was designed as per the method described above, we conducted a structural analysis accordingly. We measured and analyzed the velocity and pressure of blood flow at both inlet and outlet of the extracorporeal membrane oxygenator through CFD simulation. As a result of the modeling, it was confirmed that there was a flow in accord with the direction of the blood by the contraction/dilation. With CFD simulation, the characteristics of blood flow can be predicted in advance, so it is judged that this will be able to provide the most optimized design in producing an extracorporeal membrane oxygenator.

Effects of Post-Tensioning Tendons and Vehicle Speeds on Dynamic Response of Concrete-Filled Steel Tubular Tied Arch Girder (긴장재 및 차량속도 변화에 따른 콘크리트 충전 타이드 아치형 거더의 동적거동)

  • Roh, Hwasung;Hong, Sanghyun;Park, Kyunghoon;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.163-172
    • /
    • 2011
  • The CFTA girder developed is a concrete filled steel tubular system with arched shape and external post-tensioning (PT) tendons which control the initial camber and the bending stress of the girder. In the present study the effects of the PT tendons on the dynamic behavior of the girder subjected to a moving vehicle load are numerically investigated. Various levels for the tendon quantity and the tendon forces are considered, using the existing FE model of the girder. The vehicle considered is a DB-24 truck and is modeled with two tracks-three axles. Equivalent-load pulse time histories are applied to each node to simulate the moving vehicle, depending on the time of arrival and the discretization. The vehicle speeds are varied from 40 km/hr to 100 km/hr with increment of 20 km/hr. The analysis results show that the tendon forces do not produce any influences on the dynamic responses of the girder. However the dymamic deflection of the girder increases when a smaller amount of tendons is used. The Dynamic Amplification Factors (DAF) are evaluated based on the static and dynamic responses. Much lower values of the DAF are obtained, even no tendons applied, than those provided by the design criteria of the AASHTO LRFD and the Korea Highway Standard Specification.