• 제목/요약/키워드: FEM dynamic analysis

검색결과 633건 처리시간 0.025초

FEM을 이용한 유도 전동기의 벡터제어 특성 해석 연구 (The Analysis on Vector Control Characteristics of IM Using Finite Element Method)

  • 임달호;권병일;이중호;우경일;김창업
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.56-58
    • /
    • 1995
  • Dynamic characteristics of the vector controlled induction motor has been analysed using d-q equivalent circuit. However, for the design of the induction motor, the analysis of an accurate response characteristic are needed. In this paper, dynamic characteristic analysis method using 2-D Finite Element Method (FEM), which takes the motion equation of the rotor into account and considers the physical motion of the rotor by an automatic subdivision of mesh, are explained.

  • PDF

LS-DYNA를 이용한 자동차 승객용 에어백 모듈의 헤드 충격 해석 (Analysis of Head Impact Test of the Passenger Air-Bag Module Assembly by LS-DYNA Explicit Code)

  • 김문생;임동완;이준호
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.88-94
    • /
    • 2006
  • In this study, the dynamic impact analysis for the passenger air-bag(PAB) module has been carried out by using FEM to predict the dynamic characteristics of vehicle ride safety against head impact. The impact performance of vehicle air-bag is directly related to the design parameters of passenger air-bag module assembly, such as the tie bar bracket's width and thickness, respectively, However, the product's design of PAB module parameters are estimated through experimental trial and error according to the designer's experience, generally. Therefore, the dynamic analysis of head impact test of the passenger air-bag module assembly of automobile is needed to construct the analytical methodology At first, the FE models, which are consist of instrument panel, PAB Module, and head part, are combined to the whole module system. Then, impact analysis is carried out by the explicit solution procedure with assembled FE model. And the dynamic characteristics of the head impact are observed to prove the effectiveness of the proposed method by comparing with the experimental results. The better optimized impact performance characteristics is proposed by changing the tie bracket's width md thickness of module. The proposed approach of impact analysis will provides an efficient vehicle to improve the design quality and reduce the design period and cost. The results reported herein will provide a better understanding of the vehicle dynamic characteristics against head impact.

동체의 유연성을 고려한 헬기 착륙장치의 동특성 해석 연구 (Dynamic Analysis of a Helicopter Landing Gear with Considering Flexible Structural Modes)

  • 현영오;배재성;김영석;황재업;임경호;김두만;김태욱;황재혁
    • 한국항공운항학회지
    • /
    • 제15권4호
    • /
    • pp.33-37
    • /
    • 2007
  • In this paper, a dynamic analysis of a helicopter landing gear with considering flexible structural modes has been investigated. The main body of the helicopter has been modeled as a flexible body using FEM code, then a few selected vibration modes of the helicopter main body have been used as basis for the dynamic analysis of the helicopter landing gear. The simulation of dynamic analysis was carried out on the base of ADAMS aircraft module. It has been found by a series of simulation that the flexible structural modes has a significant effect on the dynamic characteristics of helicopter landing gear as the flexibility of the main body is increased.

  • PDF

차량용 서브프레임의 동특성 해석 (Dynamic Analysis of Vehicle Sub-frame)

  • 이봉현;김찬중;김기훈
    • 한국소음진동공학회논문집
    • /
    • 제15권12호
    • /
    • pp.1332-1339
    • /
    • 2005
  • The vibration of Powertrain are one of the import design characteristics of a vehicle. Powertrain is mostly mounted to the front subframe and powertrain mounting has an important role in determining the vehicle vibration characteristics. In this paper, the accuracy of the vibration analysis for the front subframe is discussed. The dynamic characteristic of subframe are measured from vehicle test and the finite element model updating are performed that natural frequency, mass and MAC of the experimental and theoretical modal analysis are compared. The subframe mounting stiffness are obtained the iteration method based on the vibration of subframe from vehicle test. Finally, the result of dynamic analysis which is operated dynamic load is compared with experimental one of vehicle test.

기중 차단기용 전자석 조작기 및 3절 링크 설계 (Design of Electromagnetic Actuator with Three-Link Mechanism for Air Circuit Breaker)

  • 김래은;곽상엽;정현교
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1321-1328
    • /
    • 2009
  • In this paper, an electromagnetic force driving actuator (EMFA) and three-link mechanism are proposed as a driving mechanism and connection device for low voltage air circuit breaker (ACB). As the result of dynamic characteristic analysis, the actuator and link mechanism are designed from the simulation and manufactured. The magneitc field of the EMFA is analyzed using the finite element method (FEM). The dynamic characteristic analysis with calculation of the circuit equation and kinetical equation is performed by the time difference method (TDM). Also, the result of the analysis is verified through the experiment of the fabrication model. In this paper, the EMFA size is smaller than the actuator for high voltage circuit breaker. Thus, the dynamic characteristic is analyzed with end-winding inductance that is calculated by the same method which is applied on the circle type end-winding of motors. The designed model for 1600 ampere-frame ACB and the three-link mechanism for connecting contact part with actuating part are manufactured. It is confirmed that the three-link mechanism is possible for improving the circuit breaker efficiency and reducing the size of the EMFA. It is proved that the improved 2-D analysis is more accurate than established method.

복층터널에서 도로용 중간슬래브와 연결되는 조립식 브라켓의 구조성능에 관한 실험연구 (A Experimental Study on the Structural Performance of Precast Bracket under Precast Road Deck Slab of Double Deck Tunnel)

  • 김보연;이두성;김태균;김영진
    • 대한토목학회논문집
    • /
    • 제37권4호
    • /
    • pp.647-657
    • /
    • 2017
  • 이 연구에서는 대심도 복층터널을 구성하는 중간슬래브의 하중을 터널본체에 전달하는 브라켓 구조에 관한 정 동적 거동을 조사하였다. 시공속도 향상을 위해 중간슬래브를 프리캐스트 쉴드 터널라이닝 구조체에 연결하기 위한 현장 조립형 'SPC (Steel Precast Concrete) 브라켓'을 개발하였다. 'SPC (Steel Precast Concrete) 브라켓'의 구조 성능을 평가하기 위해서 실물모형 구조실험을 수행하였으며, Contact 모델을 적용한 FEM 해석을 통해서 구조적인 안정성을 추가로 검증하였다. 정적재하실험을 수행한 결과 극한하중에 대한 브라켓의 변형이나 균열은 계측되지 않았으며, 브라켓 고정용 케미컬 앵커의 뽑힘이나 변형은 발생되지 않았다. 동적재하실험 결과 케미컬 앵커의 이상은 조사되지 않았다. FEM해석에 따른 브라켓의 거동은 정적재하실험 결과와 유사한 거동을 보여 사용성 및 구조 안정성 측면에서 문제가 없다고 판단된다.

유한요소법을 이용한 방향성 시추의 굴진율 연구 (A study on the excavation rate of directional drilling using finite element method)

  • 정태준;신영기
    • 플랜트 저널
    • /
    • 제17권3호
    • /
    • pp.42-46
    • /
    • 2021
  • 드릴 스트링의 진동 문제는 수년간 드릴링 성능 저하의 주요 원인 중 하나로 인식되어 왔으며, 굴착 작업 시 발생하는 과도한 진동은 드릴링의 효율성, 파이프 피로, 비트의 수명 단축으로 인하여 고장을 초래할 수 있다. 이러한 진동의 원인은 드릴 스트링이 굴착 작업 중 궤적에 따라 파이프의 굽힘과 wellbore와의 접촉으로 인해 마찰이 발생하고 이러한 진동은 일반적으로 축 방향, 굴곡 및 비틀림 변형을 일으킨다. 본 연구에서는 Khulief와 Al-Naser가 제시한 모델을 바탕으로 드릴 스트링에 6자유도(DOF)의 구성요소를 갖는 모델을 적용하여 curved beam의 수치해석 값과 Analytical값을 비교하여 검증하고 드릴 스트링에 hookload와 WOB 경계조건을 주어 각 element 마다 동적 거동을 분석하였다. 실제 궤적을 적용하여 드릴 파이프의 굽힘이나 중력으로 인하여 Wellbore와 접촉되는 부분에 마찰을 적용하였고, 또한 마찰 작용 시 일정한 축 방향 속도를 유지하기 위한 PI제어 값을 설계하여 drillstring 전체의 각속도 변화와 실제 드릴 굴착 작업 중 발생하는 stick slip현상을 관찰하였다.

고밀도 기록용 광픽업의 정밀 액추에이터 동특성 연구 (A Study on Dynamic Characteristics of a Precise Actuator for the High Density Optical Recording Pick-Up)

  • 김석중;이용훈;손용기;이철우;임경우
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.87-98
    • /
    • 1998
  • A Precise actuator in the pick-up of a DVDR/P(Digital Video Disk Recorder/Player) is required to control position accurately. Therefore, in order to develop a reliable actuator, dynamic characteristics of each part in an actuator should be examined closely. This paper presents systematic design process of an actuator using various analysis methods to confirm fundamental capability and solve performance problems related to dynamic characteristics of an actuator beforehand. Particularly, sensitivity analysis is presented through the program using mass moment of inertia and general equations of rigid body. Through the result of sensitivity analysis, important inferiority causes of actuator are selected and reduced. In the end, dynamic characteristics of manufactured actuators are improved considerably.

  • PDF

CHIP MOUNTER 구동부의 동적 거동 해석 (Dynamic Behavior Analysis of Driving Part in CHIP MOUNTER)

  • 박원기;박진무
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.471-474
    • /
    • 2001
  • Recently, due to demands of faster speed and extra features for the chip mounters, there has been ever-demanding needs for the basic technology. Until four or five years ago, chip mounters placing 0.3sec/chip were considered to be in the high speed category, but since then it has become a borderline for categorizing high speed machines capable of placing 0.1sec/chip. In this study, in order to analyze the vibration of head generated by the dynamic behavior of x-frame, FEM model is composed and modal analysis is performed to identify the dynamic characteristics of the structure. Those results are compared with the modal test in order to verify the model. In this paper, Several other factors, such as definition of dynamic accuracy, static accuracy and tolerance of the axis settling range, that might affect the dynamic behavior the head are discussed.

  • PDF

평면 X-Y 스테이지의 초정밀 위치결정을 위한 최적 설계 및 제어시스템 개발 (The Development of Optimal Design and Control System for Ultra-Precision Positioning on Single Plane X-Y Stage)

  • 한재호;김재열;심재기;김창현;조영태;김항우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.348-352
    • /
    • 2002
  • a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. This thesis represents optimal design on ultra-precision positioning with single plane X-Y stage and development of artificial control system for adequacy of industrial demand. Also, dynamic simulation on global stage is performed by using ADAMS (Automated Dynamic Analysis of Mechanical System) for the purpose of grasping dynamic characteristic on user designed X-Y global stage. The error between displacements from micro stage and from FEM(Finite Element Method) is 3.53% by verifications of stability on micro stage and control performance. As maximum Von-mises stress on hinge of micro stage is 5.981kg/mm$^2$ that is 1.5% of yield stress, stability on hinge is secured. Preparing previous results, optimal design of micro stage can be possible, and reliance of results with FEM can be secured.

  • PDF