• Title/Summary/Keyword: FEM dynamic analysis

검색결과 635건 처리시간 0.024초

이방성 복합재료의 동적특성에 관한 연구 (Dynamic Characteristics of Anisotropic Laminated Plates)

  • Park, Sungjin;Baek, Jooeun
    • 한국재난정보학회 논문집
    • /
    • 제12권1호
    • /
    • pp.62-68
    • /
    • 2016
  • 본 연구에서는 충격 문제를 거론하며 Mindlin 판 이론을 확장한 1차 전단 변형 이론에 근거하여 충격 하중을 받는 적층판의 응답 특성의 해석을 목적으로 아이소파라메트릭요소에 의한 정식화를 시도한다. 유한요소법을 이용하여 역대칭 Angle-Ply 적층판의 사각판과 원형판의 수치해석을 통해 정적해석과 동적해석의 결과를 도출하여 각 변위에 대한 분석결과를 비교한다.

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.

산화제 터보펌프의 구조 강도 및 진동 안전성에 관한 연구 (Investigation on the Strength and Vibration Safety of the Oxidizer Turbopump)

  • 전성민;김진한;양수석;이대성
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.271-278
    • /
    • 2001
  • Structural and dynamic analyses of inducer and impeller for a oxidizer turbopump are peformed to investigate the safety level of strength and vibration at design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three dimensional finite element method(FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances m sufficient enough to be operated safely within the required life cycle.

  • PDF

라인센터의 성능향상을 위한 구조설계 (Structural Design for Performance Improvement of Line Center)

  • 정선환;최성대;권현규;최언돈;손재률
    • 한국기계가공학회지
    • /
    • 제2권3호
    • /
    • pp.76-83
    • /
    • 2003
  • Recently, the field of the engineering has been studied about optimum design continuously. Verified data by comparison with simulation and dynamic characteristic analysis enables the design of a machine tool to be modified easily and effectively concerning to the mode shape of the vibration. Especially, BC-500 Line Center has got some problems causing vibration which mainly come from Column and ATC part. So it is necessary to solve those problems by the two kinds of method such as changing structural design and reinforcing with ribs. In this paper, column and ATC part of BC-500 Line center are modified by an optimum design by the analysing method of FEM to avoid vibration. As a result, a more stable machine tool was designed by this simulation as optimum condition.

  • PDF

고속 디버링 머신의 개발에 관한 연구 (A Study on Development of High Speed Deburring Machine)

  • 구자함;김인환;허남수
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.116-121
    • /
    • 2013
  • A high speed deburring machine was developed based on the analysis of magnetic contact force, forced vibration, stiffness and deformation of the structure. After 3 dimensional CATIA modelling, the stiffness and the deformation properties of the deburring machine in static and dynamic condition using finite element method were analyzed. Both static and dynamic simulation results showed that designed high speed deburring machine was well satisfied the stability properties at the operating condition. we have performance test program for the real system to evaluate the simulation results.

Development of an Electro-mechanical Driven Broaching Machine

  • Park, Hong-Seok;Park, In-Soo;Dang, Xuan-Phuong
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.7-14
    • /
    • 2015
  • The machine tools builders are trying to improve the efficiency and performance of the machine tools. The electro-mechanical driven broaching machine has many advantages such as lower noisy operating, higher energy efficiency, and smaller space of installation. This paper presents the structural and mechanical development of an electro-mechanical driven broaching machine that is replaced for traditional hydraulic one. The servo motor, ball screw and roller linear guide are used instead of hydraulic cylinder and translation frictional sliding guides. The simulation method based on FEM was applied to analyze the stress, deformation of the machine for static analysis. The dynamic analysis was carried out for verifying and assessing the mechanical behavior of the developed broaching machine. This work helps broaching machine developer make a better product at the early design stage with lower cost and development time.

압전 수중음향 센서의 동적해석 프로그램 개발 (Development of Software for Dynamic Analysis of Piezoelectric Underwater Transducers)

  • 최준화;김재환;조치영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1053-1058
    • /
    • 2003
  • Piezoelectric under water acoustic transducer is a kind of device for under water detection working as not only an actuator but also a sensor. The technique that can predict acoustical characteristics of transducer is important for robust design of transducer in harsh underwater environment. This paper represents the development of software for analyzing dynamic characteristics of piezoelectric acoustic transducers based on finite element method. Modal and transient analysis modulo for acoustic transducers are developed TWO dimensional model for Tonpilz transducer is used for the test of the developed nodal and transient analysis modules. and comparison is made with a commercial code, ANSYS.

  • PDF

유한요소법을 이용한 완전 세라믹의 3차원 과도해 해석 (Three Dimensional Transient Analysis of Piezoelectric Beam Using Finite Element Method)

  • 주현우;이창환;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.608-610
    • /
    • 2000
  • The static characteristic of a piezoelectric beam is for finding resonance frequency of the beam. In practice, it is required to analyze the beam with external command circuit including capacitors, inductors, and resistors for control. It means that the proper analysis of a piezoelectric beam with external command circuit is required by a dynamic analysis. We can also got transient and steady-state solution from the analysis. In this paper, the static and dynamic characteristic of the piezoelectric beam using FEM(Finite Element Method) are proposed.

  • PDF

Linear shell elements for active piezoelectric laminates

  • Rama, Gil;Marinkovic, Dragan Z.;Zehn, Manfred W.
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.729-737
    • /
    • 2017
  • Piezoelectric composite laminates are a powerful material system that offers vast options to improve structural behavior. Successful design of piezoelectric adaptive structures and testing of control laws call for highly accurate, reliable and numerically efficient numerical tools. This paper puts focus onto linear and geometrically nonlinear static and dynamic analysis of smart structures made of such a material system. For this purpose, highly efficient linear 3-node and 4-node finite shell elements are proposed. Both elements employ the Mindlin-Reissner kinematics. The shear locking effect is treated by the discrete shear gap (DSG) technique with the 3-node element and by the assumed natural strain (ANS) approach with the 4-node element. Geometrically nonlinear effects are considered using the co-rotational approach. Static and dynamic examples involving actuator and sensor function of piezoelectric layers are considered.

Comparison of the dynamic responses of $G\ddot{u}lburnu$ Highway Bridge using single and triple concave friction pendulums

  • Yurdakul, Muhammet;Ates, Sevket;Altunisik, Ahmet Can
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.511-525
    • /
    • 2014
  • The main object of this study is to determine and compare the structural behavior of base isolated long span highway bridge, $G\ddot{u}lburnu$ Highway Bridge, using single concave friction pendulum (SCFP) and triple concave friction pendulum (TCFP). The bridge is seismically isolated in the design phase to increase the main period and reduce the horizontal forces with moments using SCFP bearings. In the content of the paper, firstly three dimensional finite element model (FEM) of the bridge is constituted using project drawings by SAP2000 software. The dynamic characteristics such as natural frequencies and periods, and the structural response such as displacements, axial forces, shear forces and torsional moments are attained from the modal and dynamic analyses. After, FEM of the bridge is updated using TCFP and the analyses are performed. At the end of the study, the dynamic characteristics and internal forces are compared with each other to extract the TCFP effect. To emphasize the base isolation effect, the non-isolated structural analysis results are added to graphics. The predominant frequencies of bridge non-isolated, isolated with SCFP and isolated with TCFP conditions decreased from 0.849Hz to 0.497Hz and 0.338Hz, respectively. The maximum vertical displacements are obtained as 57cm, 54cm and 44cm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively. The maximum vertical displacement reduction between isolated with TCFP bearing and isolated with SCFP bearing bridge is %23. Maximum axial forces are obtained as 60619kN, 18728kN and 7382kN, maximum shear forces are obtained as 23408kN, 17913kN and 16249kN and maximum torsional moments are obtained as 24020kNm, 7619kNm and 3840kNm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively.