• Title/Summary/Keyword: FEM dynamic analysis

Search Result 635, Processing Time 0.025 seconds

Dynamic Analysis of Tunnel by Using Infinite Element (무한요소를 이용한 터널의 동적해석)

  • 양신추;이희현;변재양
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.145-152
    • /
    • 1994
  • The dynamic interaction between tunnel structures and their surrounding soil medium due to impulse loading is investigated by a hybrid IEM/FEM methodology. A dynamic infinite element is developed for the efficient descretization of the far-field region of the unbounded soil medium. The shape functions of the infinite element are constructed based on the far-field solutions which are obtained by solving the 2-D elastic wave problems. Also they are devised to obtain a reasonable result over all frequency range. Numerical analysis is carried out to examine the response of the tunnel subjected to simple rectangular impulse. It is indicated that the results by the present method are in good accord with those by the boundary and finite element coupling method.

  • PDF

Dynamic Analysis of ATM Double Bill Detector (ATM기 2매 검지부의 동적 해석)

  • Jeong, Joong-Ki;Suh, Jun-Ho;Baek, Yoon-Kil;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1208-1214
    • /
    • 2006
  • ATM(automated-teller machine) is a machine that receives and pays money directly. The double bill detector(DBD) module of an ATM detects double bills from its thickness. In this paper, the dynamic behavior of the DBD was analyzed, which cannot be simulated correctly by a package program of SAMCEF. And the displacements of the lever was measured for various bills experimentally. The measured dynamic behaviors were analyzed kinematically using a vector equation and simulated dynamically by the derivation of equation of motion with consideration of damping and stiffness of the DBD and bills. The analysis showed that the spring constant of the system is not so influential, instead, the contact angle between the lever and bill needs to be larger than the existing DBD in order to be laster and reliable DBD.

Finite Element Analysis on the Dynamic Behaviors of a Disk-Pad Brake in High-Speed Trains (고속전철용 디스크-패드 브레이크의 동적거동 특성에 관한 유한요소해석)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.7-7
    • /
    • 2000
  • Using a coupled thermal-mechanical analysis, the dynamic distortion of the ventilated disk brakes has been presented for a high-speed train. The offset ratio between the maximum and minimum values of the thermal distortions has been analyzed as a function of a braking number. The computed FEM results show that the offset rations in radial direction are much greater than those of circumferentially distorted components. This means that the axial distortions in radial direction may dominantly produce thermally caused wears and cracks at the rubbing surfaces.

Finite Element Analysis on the Dynamic Behaviors of a Disk-Pad Brake in High-Speed Trains (고속전철용 디스크-패드 브레이크의 동적거동 특성에 관한 유한요소해석)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • Using a coupled thermal-mechanical analysis, the dynamic distortion of the ventilated disk brakes has been presented for a high-speed train. The offset ratio between the maximum and minimum values of the thermal distortions has been analyzed as a function of a braking number. The computed FEM results show that the offset ratios in radial direction are much greater than those of circumferentially distorted components. This means that the axial distortions in radial direction may dominantly produce thermally caused wears and cracks at the rubbing surfaces.

A study of dynamic peoperties in cyclic simple shear test (동적단순전단 시험기를 이용한 매립지반 거동특성에 관한 연구)

  • Kim, Sung-Jin;Ryu, Jeong-Ho;Park, Yo-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1422-1430
    • /
    • 2008
  • Cyclic simple shear test apparatus was used to investigate the dynamic response of liquefiable soils as reclamation material. The specimen were reclamation using simple air-pluviation method. The confining stress was applied the range of 100 kpa to 200 kpa. The resulted strain was in the range of $10^{-3}$ ~ 5 %. Based on these test results modulus reduction curve, damping curve and cyclic strength curve were developed. The developed curves were compared to those already available in literature. The obtained curves can be applied to FEM or equivalent linear analysis such as SHAKE for ground response analysis.

  • PDF

A Development of the Dynamic Absorber and Damper for Vibration and Noise Reduction of the Personal Computer (PC의 진동/소음 저감을 위한 쿨링홴의 동흡진장치 및 절연장치의 개발)

  • Jung, Won-Young;Lee, Kyu-Ho;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.339-345
    • /
    • 2011
  • The purpose of this study is reduction the vibration of the personal computer by developing the vibration absorber and damper. The eccentricity of the cooling fan causes the vibration of the computer. We designed the material properties of the vibration absorber and damper by FEM model within operation frequencies of the cooling fan. We experiment the overall analysis and system analysis by using a laser vibrometer. The result shows that the proposed dynamic absorber and damper reduce the vibration of the personal computer.

Dynamic Response Characteristics of Floating Structures According to Connection Types (부유식 구조물의 접합부 형태에 따른 동적응답 특성 연구)

  • Kim, Byoung-Wan;Hong, Sa-Young;Kyoung, Jo-Hyun;Cho, Seok-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.132-140
    • /
    • 2006
  • This paper investigates the characteristics of dynamic responses of floating structures with connections under sea wave loads. Direct method using higher order boundary element method (HOBEM) and finite element method (FEM) is adopted for numerical analysis. A 500 m-long and 250-m width very large floating structure (VLFS) with four units are considered in numerical analysis. Hinge connection and spring connection with various strength are considered as connection types. Displacements and stresses of VLFS according to the connection types are compared considering wave period and heading angle reduction.

Dynamic Characteristics Analysis of Electric Actuator (EMFA) for Air Circuit Breaker (ACB) with Three-bar Linkage structure (3링크를 적용한 기중차단기용 전자석 조작기(EMFA) 해석)

  • Lee, Seung-Min;Kang, Jong-Ho;Kwak, Sang-Yup;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.97-99
    • /
    • 2009
  • In this paper, a new type of electromagnetic actuator, an electro magnetic force driving actuator (EMFA) is developed and analyzed, applicable to air circuit breaker (ACB). Transient analysis is performed in order to obtain the dynamic characteristics of the EMFA. The distribution of static magnetic flux is obtained using the finite element method (FEM). The coupled problems of electrics and mechanics governing equations are solved using the time difference method (TDM). Also according to interception rate of each contactor, investigation about load condition of contactor spring is conducted, applied it to three-link system. And comparison about dynamic characteristics of three-link simulation and experiment data are performed.

  • PDF

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

Study on Application of Isogeometric Analysis Method for the Dynamic Behavior Using a Reduced Order Modeling (축소 모델의 동적 거동 해석을 위한 등기하해석법 적용에 대한 연구)

  • Kim, Min-Geun;Kim, Soo Min;Lee, Geun-Ho;Lee, Hanmin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.275-282
    • /
    • 2018
  • Using isogeometric analysis(IGA) gives more accurate results for higher order mode in eigenvalue problem than using the finite element method(FEM). This is because the FEM has $C^0$ continuity between elements, whereas IGA guarantee $C^{P-1}$ between elements for p-th order basis functions. In this paper, a mode based reduced model is constructed by using IGA and dynamic behavior analysis is performed using this advantage. Craig-Bampton(CB) method is applied to construct the reduced model. Several numerical examples were performed to compare the eigenvalue analysis results for various order of element basis function by applying the IGA and FEM to simple rod analysis. We have confirmed that numerical error increases in the higher order mode as the continuity between elements decreases in the IGA by allowing internal knots multiplicity. The accuracy of the solution can be improved by using the IGA with high inter-element continuity when high-frequency external force acts on the reduced model for dynamic behavior analysis.