• Title/Summary/Keyword: FEM and DOE analysis

Search Result 28, Processing Time 0.026 seconds

Optimal Design of Slim TV Wall Mount Arm with Cantilever Structure (외팔보 구조의 슬림형 TV 월마운트암의 최적설계)

  • Jang, Woon-Geun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.4
    • /
    • pp.167-172
    • /
    • 2011
  • This paper investigated optimal design for slim wall mount arm for flat TV. Recently the number of flat TV sets in use went on increasing in TV market. As the flat TV sets are getting common, consumers came to need another requirements like aesthetic factor besides display performances. As the new TV sets tend to be slimmer due to aesthetic design, Wall mount also requires to be slimmer for aesthetic balance. Slim structures, however, are vulnerable to structural rigidity. In this study, slim wall mount arm has been designed by 3D CAD and DOE (Design of Experiments) and finite element analysis for optimal structural design were carried out to determine the design variables for minimize working stress of wall mount arm. Finally two optimal design conditions were selected through DOE and FEM and one of those was chosen under constraint of minimizing blanking developed length.

The Optimum Design of Rotor Shape in Front Disk Brake System for Squeal Noise Reduction using the DOE (실험계획법을 이용한 전륜 디스크 브레이크 시스템의 로터형상 스퀼소음 저감 최적화)

  • Lee, Hyun-Young;Joe, Yong-Goo;Abu, Aminudin Bin;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.236-240
    • /
    • 2005
  • This paper deals with friction-induced vibration of disc brake system under constact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, The comparison of experimental and analytical results shows a good agreement and the analysis indicates that mode coupling due to friction force and geometric instability is responsible fur disc brake squeal. And the Front brake system reduced the squeal noise using design of experiment method(DOE). This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF

A Study on the Detent Torque Reduction of Claw Pole Permanent Magnet Type Motor

  • Jung, Dae-Sung;Lee, Ju;Lee, Sang-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.125-132
    • /
    • 2013
  • This paper has done a three-dimensional FEM analysis of the PM claw pole stepping motor. As magnetization happens in the z-axis, which does not have a constant value, three-dimensional FEM analysis is necessary for characteristic analysis of PM claw pole stepping motors. Because it is a type of permanent magnet motor, the PM claw pole stepping motor naturally has a detent torque. This torque is known to show negative effects on motor performance. To improve motor performance, reducing the detent torque is very important during the motor design. This paper applied DOE for optimization of stator pole design of the motor. Also, we compared motor performance by applying a different type of rotor shape, dividing the permanent magnet. To verify the simulation results, an experiment was done.

A study on the improvement of static characteristic In claw poled permanent magnet stepping motor (Claw Pole 영구자석형 스테핑 모터의 정특성 향상에 관한 연구)

  • Jung, Dae-Sung;Lim, Seung-Bin;Kim, Tae-Heoung;Lee, Ju;Kwon, Ho;Son, Yeoung-Gyu;Choi, Seung-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1288-1290
    • /
    • 2005
  • This paper analyzed the characteristics of the claw pole PM step motor by using 3D FEM. As the magnetization occurs along the z-axis of the motor, it is necessary to apply 3D FEM for analysis of the claw pole PM step motor. Considering the computation time, however, the number of the analysis model is minimized by using the "Design of Experiments(DOE)". By using the "DOE", efficient analysis was able to be done. To see the effects of the design factors, the 3D FEM is applied only to the selected models. As the design factors, the teeth shape, the number of turns and the permanent magnet overhang was selected.

  • PDF

Optimal Design of a High-Speed Linear Synchronous Motor in a Dynamic Tester for Catenary Current Collection (전차선로-집전계 주행시험기 추진용 고속 선형동기전동기의 최적설계)

  • Lee, Hyung-Woo;Kwon, Sam-Young;Lee, Byung-Song;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.665-674
    • /
    • 2006
  • This paper presents the optimal design of a high-speed (200[km/h]) Linear Synchronous Motor which will be used as a propulsion system of a dynamic tester for catenary-current collection used in railways. Motor performance, especially detent force minimization on various design schemes has been investigated in detail by using FEM (Finite Element Method). Simulation-based DOE (Design of Experiments) method is also applied in order to reduce the large number of analysis according to each design variable and consider the effect among variables. The optimal design in all aspects is proposed by an optimization algorithm using a regression equation derived from the simulation-based DOE and the performance is verified by FEM.

  • PDF

Optimal Design for Torsional Stiffness of the Tubular Space Frame of a Low-Cost Single Seat Race Car (저가 입문용 1인승 레이스카 Tubular Space Frame의 비틀림 강성 최적설계)

  • Jang, Woongeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5955-5962
    • /
    • 2014
  • Generally, the frame design of a vehicle is a critical technology that plays an important role in the racing and high performance sports car market. The high performance of race car frame means that it requires high torsional stiffness because it directly affects the cornering behavior of the race car. The optimal design for the frame of a low-cost single seat race car was carried out using the DOE (Design Of Experiments) with Taguchi's orthogonal array and FEM (Finite Element Method) analysis to secure sufficient torsional stiffness in this paper. According to the results by DOE and FEM analysis, the optimal design case produced improved 10.7% and 14.5% improvement in each stiffness-to-weight ratio and frame weight than in the early design step. Therefore, this paper shows that the optimal design with Taguchi's orthogonal array is very useful and effective for designing a tubular space frame of a low-cost single seat race car in the early design step.

The Stress Distribution Analysis of PEMFC GDL using FEM (유한요소법을 이용한 고분자전해질연료전지 기체확산층의 응력분포 연구)

  • Kim, Chulhyun;Sohn, Youngjun;Park, Gugon;Kim, Minjin;Lee, Jonguk;Kim, Changsoo;Choi, Yusong;Cho, Sungbaek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.468-475
    • /
    • 2012
  • A proper stacking force and assembly are important to the performance of fuel cell. Improper assembly pressure may lead to leakage of fuels and high interfacial contact resistance, excessive assembly pressure may result in damage to the gas diffusion layer and other components. The pressure distribution of gas diffusion layer is important to make interfacial contact resistance less for stack performance. To analyze the influence of design parameter factors for pressure distribution, and to optimize stack design, DOE (Design of Experiment) was used for polymer electrolyte membrane fuel cell stack pressure test. As commonly known, the higher clamping force improves the fuel cell stack performance. However, non-uniformity of stress distribution is also increased. It shows that optimization between clamping force and stress distribution is needed for well designed structure of fuel cell stack. In this study, stack design optimization method is suggested by using FEM (Finite Element Methode) and DOE for light-weighted fuel cell stack.

A Study on the Improvement of Static Torque Characteristic in Permanent Magnet Stopping Motor with Claw Pole (Claw Pole Type 영구자석형 스테핑 모터의 정토크 특성 향상에 관한 연구)

  • Lim, Seung-Bin;Son, Yeoung-Gyu;Kim, Young-Tae;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.80-87
    • /
    • 2006
  • This paper analyzed the characteristics of the claw pole PM stewing motor by using 3D FEM. As the magnetization occurs along the z-axis of the motor, it is necessary to apply 3D FEM for analysis of the claw pole PM stewing motor. Considering the computation time, reducing the number of the analysis model is effective method of the methods of the reducing analysis time. By using the "Design Of Experiments(DOE)", efficient analysis was able to be done. To see the effects of the design factors, the 3D FEM is applied only to the selected models. As the design factors, the teeth selected models, the number of turns and the permanent magnet overhang was selected.

Optimal design of High precision Maglev system using Finite Element Method and Design Of Experiments (유한 요소법과 실험계획법을 병행 사용한 고정밀 자기 부상 시스템의 최적 설계)

  • Lee, Sung-Gu;Won, Sung-Hong;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1267-1269
    • /
    • 2005
  • This paper presents the design for improving performance of the high-precision Magnetic levitation system. Motor performance on various design schemes such as thickness and magnetizing patterns of the permanent magnets, pole pitch, length of air gap, turn number of windings, and thickness of the aluminum-core has been investigated in detail by using FEM(Finite Element Method) Simulation-based DOE(Design of Experiments) method is also applied in order to reduce the large number of analysis according to each design variable and consider the effect among variables. The design in all aspects is proposed by an optimization algorithm using regression equation derived from the simulation-based DOE.

  • PDF

Selection of the Optimum Seaming Condition for Spin Drum Using Statistical Method (통계적 기법을 이용한 스핀드럼의 시밍 최적조건 선정)

  • Kim, Eui-Soo;Lee, Jung-Min;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2008
  • There are being a lot of studies for achievement of high speed Dehydration, high-strength and Lightweight of washing machine in the latest washing machine business. It is essential that strength of mechanical press-Joining (MPJ) for spin drum is improved to attain that target. MPJ of spin drum is composed of seaming and caulking process. Because Seaming process of MPJ has various design factors such as thickness, bending radius, seaming width, caulking press width and the dynamic factor such as multistage plastic working, elastic recovery, residual stress, the optimum conditions can't be easily determined. Using a design of experiment (DOE) based on the FEM (Finite Element Method), which has several advantages such as less computing, high accuracy performance and usefulness, this study was performed investigating the interaction effect between the various design factor as well as the main effect of the each design factor during drum MPJ and proposed optimum condition using center composition method among response surface derived from regression equation of simulation-based DOE.