• Title/Summary/Keyword: FEM analysis of magnetic field

Search Result 217, Processing Time 0.023 seconds

The Development of Axial Magnetic Field Type Vacuum Interrupter (종자계형 진공인터럽터의 개발)

  • 박홍태;안희일;김성일;이경행
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.231-233
    • /
    • 2001
  • Axial magnetic field(AMF) type electrodes can be increase the interrupting capability of vacuum interrupters. Depending on the design, the principle of the local axial magnetic field arrangement are different. In this paper, a new AMF contact design based on a unipolar field arrangement and its characteristics are introduced. The influence of the unipolar AMF on the arc behavior is described by high-speed video camera. In addition, three-dimensional AMF simulations have been peformed by means of a finite element analysis(FEM) program to analyze the influence of magnetic field distribution on the AMF performance. The high interrupting capability of the unipolar AMF type electrode has been confirmed by three-phase test.

  • PDF

Characteristics Analysis of Radially Magnetized Tubular type Magnetic Coupling (반경 방향으로 자화된 Tubular 타입 자기 커플링의 특성 해석)

  • Kim, Chang-Woo;Jung, Kyoung-Hun;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1551-1557
    • /
    • 2015
  • Magnetic coupling is used where required high reliability. because magnetic coupling's durability is stronger than mechanical coupling's durability. This paper shows the characteristics of radially magnetized tubular type magnetic coupling by using Analytical method such as space harmonic method. Analytical method was used, to find force characteristics. First, on the basis of the magnetic vector potential and two-dimensional(2-D) polar-coordinate system, the magnetic field solutions of the radially magnetized permanent magnet are obtained. And we obtain the analytical solutions for the flux density produced by permanent magnet. Finally, we can calculate the force by using the Maxwell stress tensor. And then, Finite element method(FEM) is used to validate force characteristics.

Analysis of an HTS coil for large scale superconducting magnetic energy storage

  • Lee, Ji-Young;Lee, Seyeon;Choi, Kyeongdal;Park, Sang Ho;Hong, Gye-Won;Kim, Sung Soo;Lee, Ji-Kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

Analysis on Superconducting Electrodynamic Suspension for Very High Speed Maglev (초고속 자기부상열차를 위한 초전도 반발식 자기부상 특성 해석)

  • Bae, Duck-Kweon;Lee, Jong-Min;Cho, Han-Wook;Han, Hyung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.198-200
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator. Superconducting EDS system is generated by the interaction between the magnetic field made by the induced the eddy current in the ground conductor and the moving magnetic field made by onboard superconducting magnet. The levitation force of EDS system, which is proportional to the strength of the moving magnetic field, becomes saturated according to the increase of the velocity Especially, the levitation force is influenced by the structure of HTS magnet and ground conductor. The 3-D numerical analysis with FEM was used to find the distribution of the magnetic field, the optimal coil structure, and the calculation of the levitation force.

  • PDF

Study on Torque Analysis of Micro-Electromagnetic Clutch by Using FEM (FEM을 이용한 Micro-Electromagnetic Clutch 토크해석)

  • Piao Changhao;Cho Chongdu;Kim Myunggu;Pan Qiang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.60-65
    • /
    • 2005
  • This study tries to analyzes the static friction torque that generated in a micro-electromagnetic clutch by using FEM. For the purpose of design change and optimization of the micro-electromagnetic clutch, the static friction torque prediction is very important. We construct the axi symmetric FEM model for analyze the static friction torque and the real material properties are substituted to the FEM model. For a test, predicted static friction torque is compared with experimental one to discuss the rationality of torque analysis process. The analytical result agrees well to experimental data. explaining the validity of the mathematical process and FEM model.

Efficient Magnetic Field System for High Speed Electric Machines (초고속 전기기기용 고성능 자기회로 시스템)

  • Jang, S.M.;Seo, J.H.;Jeong, S.S.;Lee, S.H.;Choi, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.19-21
    • /
    • 1997
  • This paper treated a new method that generates the dipole magnetic field for high speed machines by using Halbach array, which was suggested by Klaus Halbach. The Halbach array can produce the various field distribution without magnetic materials. Therefore, the iron losses can be reduced. This paper presented the magnetic characteristics on both linear and cylindrical Halbach array. And the Halbach array for dipole field was manufactured with Nd-Fe-B magnets having 1.17(T), the measured flux density was compared the theoretical values acquired by three dimensional FEM analysis. Finally, the magnetic characteristics of Halbach array were compared with those of other conventional dipole field systems.

  • PDF

Analysis of Magnetic Concentrator of Magnetic Sensor by Using Finite Element Method (유한요소법을 이용한 자기센서용 자속집속기의 해석)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.89-93
    • /
    • 2013
  • In this study, magnetic concentrators which could be used to enhance sensitivity of Hall effect sensor were analyzed by using FEM. The parameters for FEM analysis were the thickness and edge shape of magnetic concentrator and relative position of magnetic concentrator against Hall element. Magnetic field in z direction decreased with increasing of the thickness of magnetic concentrator, of which tendency was similar to apparent relative permeability calculated with demagnetizing factor of magnetic concentrator. There were optimal thickness and edge shape of magnetic concentrator according to the relative position of magnetic concentrator against Hall element.

3D Magnetic Field Analysis of Superconducting Rotary Machine by Using Analytical Method (해석적 방법을 이용한 초전도 회전기의 3차원 자계 해석)

  • Jo, Young-Sik;Seo, Moo-Gyo;Baik, Sung-Kyu;Kim, Seog-Whan;Sohn, Myung-Whan;Kwon, Young-Kil;Lee, Jung-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.616-618
    • /
    • 2002
  • A Superconducting Rotary Machine (SRM) is characterized by an air-cored machine with its rotor iron and stator iron teeth removed. For this reason, the SRM is featured by 3D magnetic flux distribution, which decreases in the direction of axis, Therefore, 3D magnetic field analysis method is required to know about characteristic of magnetic field distribution of SRM, In this paper, 3D flux distribution of SRM is calculation by using analytical method. The magnetic field distribution due to the field coils use of the Biot-Savart equation. The magnetic core is represented by magnetic surface polarities. The paper describes the combined use of above methods for the total computation, and compares analytical method and 3D FEM(Finite Element Method) results.

  • PDF

Coupling Finite Elements and Analytical Solution for Electromagnetic Field Analysis (유한요소법과 해석석의 응합에 의한 전자동 연구)

  • 김은배;양재면;이기식;유동일
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.362-368
    • /
    • 1992
  • This paper presents a coupling scheme, which couples an analytical solution and the standard finite element, for analyzing the electromagnetic fields. The former is a solution of the magnetic field in free space, i.e., the outer region of boundary, and the latter represents the system with source currents and magnetic materials in the inner region of boundary. The proposed method retains the sparsity and symmetry of the final system matrix, the merits of the standard FEM. To verify the usefulness of the proposed algorithm, an example which can be solved analytically is chosen and analyzed. The results are compared with those of the standard FEM and the analytic solutions.

  • PDF

The Temperature Distribution and Thermal Stress Analysis of Mold transformer (주상용 몰드변압기의 온도분포와 열응력 해석)

  • 조한구;이운용;한세원
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.387-390
    • /
    • 2000
  • The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. Therefore design time and design cost are decreased by numerical analysis. In this paper, the temperature distribution and thermal stress analysis of 50kVA pole cast resin transformer for power distribution are investigated by FEM program. The temperature change according to load rates of transformer also have been investigated. We have carried out temperature rise test and test results are compared with simulation data.

  • PDF