• 제목/요약/키워드: FEM Simulation

검색결과 1,298건 처리시간 0.027초

FE Analysis of Alumina Green Body Density for Pressure Compaction Process (압축성형공정에 대한 알루미나 성형체 밀도분포의 FE 분석)

  • Im, Jong-In;Yook, Young-Jin
    • Journal of the Korean Ceramic Society
    • /
    • 제43권12호
    • /
    • pp.859-864
    • /
    • 2006
  • For the pressure compaction process of the ceramic powder, the green density is very different with both the ceramic body shape and the processing conditions. The density difference cause non-uniform shrinkages and deformations, and make cracks in the sintered ceramics. In this paper, Material properties of the alumina powder mixed with binder and the friction coefficient between the powder and the tool set were determined through the simple compaction experiments: Also the powder flow characteristics were simulated and the green density was analyzed during the powder compaction process with Finite Element Method (FEM). The results show that the density distributions of the green body were improved at the optimized processing condition and both the possibility of the farming crack generation and rho deformation of the sintered Alumina body were reduced.

Simulation of Growth Behavior of Sawtoothed Interface by the compression (톱니형상면의 압축에 의한 성장거동 시뮬레이션)

  • 정태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.90-94
    • /
    • 2002
  • In this paper, Compression in the case where dissimilar blocks are twinned variously are carried out in the condition of lubricated interface. The degree of growth is experimentally investigated. Moreover, numerical simulations are carried out by the elastic-plastic FEM for the case of the dissimilar blocks with the initial sawtooth angle of 60。. The dissimilar blocks are twinned, larger difference between material properties leads smaller growth, and the degreased interface leads smaller growth than that in the lubricated one. Furthermore, by the simulation of compression where dissimilar blocks are twinned, it is confirmed that the tendency of the general deformation pattern is very similar to the experiment.

  • PDF

Optimal Design of a High-Speed Linear Synchronous Motor in a Dynamic Tester for Catenary Current Collection (전차선로-집전계 주행시험기 추진용 고속 선형동기전동기의 최적설계)

  • Lee, Hyung-Woo;Kwon, Sam-Young;Lee, Byung-Song;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.665-674
    • /
    • 2006
  • This paper presents the optimal design of a high-speed (200[km/h]) Linear Synchronous Motor which will be used as a propulsion system of a dynamic tester for catenary-current collection used in railways. Motor performance, especially detent force minimization on various design schemes has been investigated in detail by using FEM (Finite Element Method). Simulation-based DOE (Design of Experiments) method is also applied in order to reduce the large number of analysis according to each design variable and consider the effect among variables. The optimal design in all aspects is proposed by an optimization algorithm using a regression equation derived from the simulation-based DOE and the performance is verified by FEM.

  • PDF

Axial Impact Collapse Analysis on Front-End Side Members of Vehicles by FEM (FEM에 의한 차량전면부 사이드부재의 축방향 충격압궤 해석)

  • Cha Cheon-Seok;Chung Jin-Oh;Yang In-Young
    • Journal of the Korean Society of Safety
    • /
    • 제18권4호
    • /
    • pp.1-7
    • /
    • 2003
  • The front-end side members of vehicles(spot welded hat and double hat shaped section members) absorb most of the impact energy in a case of front-end collision. In this paper, specimens with various spot weld pitches have been tested with a high impact velocity of 7.19m/sec(impact energy of 1034J). The axial impact collapse simulation on the sections has been carried out to review the collapse characteristics of these sections, using an explicit finite element code, LS-DYNA3D. Comparing the results with experiments, the simulation has been verified; the energy absorbing capacity is analyzed and an analysis method is suggested to obtain exact collapse loads and deformation collapse modes.

COMPUTER SIMULATION OF ARC INTERRUPTION USING FEM FOR $SF_6$ GAS CIRCUIT BREAKERS

  • Park, K.Y.;Chong, J.K.;Song, K.D.;Lee, B.Y.;Mu, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 유기절연재료 방전 플라즈마
    • /
    • pp.68-73
    • /
    • 2000
  • An arc model based on the N-S equations modified by adding an energy source term to take account of the arc is developed and solved using Taylor-Galerkin FEM. The numerical method is applied to the simulation of the interruption process of a puffer type GCB. Moving boundary conditions of the arc chamber during operation is taken into account. The thermal interruption capability of an actual puffer type GCB will be predicted and compared with that of the measured result.

  • PDF

A Study on the Prediction of Grain Size Distribution in Hot Forging of Waspaloy Turbine Disc (Waspaloy 터빈디스크의 열간 단조시 결정립분포 해석에 관한 연구)

  • Yeom, Jong-Taek;Lee, Chong-Soo;Kim, Jeoung-Han;Lee, Dong-Geun;Park, Nho-Kwang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제9권2호
    • /
    • pp.70-76
    • /
    • 2006
  • The microstructure evolution during a hot forging of Waspaloy was investigated using the recrystallization model and FEM simulation. In order to obtain an uniform microstructure, hot forging was carried out by two step. The change of grain size during hot forging has a deep connection with dynamic recrystallization behavior. Avrami-type constitutive equation for the dynamic recrystallization was implemented into an user subroutine of 2D FE simulator. The evolution of grain structure in the two-step forging of Waspaloy was simulated using the 2D FEM user-subroutine. The detailed variation of microstructures due to dynamic recrystallization could effectively be predicted at various locations in a forged pancake.

Field analysis of end_turn coil of HV induction motor (고압 회전기에서 코일 단부의 전계 해석)

  • Park, Seung-Bae;Kim, Do-Wan;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.70-72
    • /
    • 1998
  • Because of using PWM inverters and converters. The problems of insulation breakdown is emerging in both high voltage motors and general motors. In conventional methods, the viewpoint of surge problems is wave propagation with or without cable and inverter. For the purpose of knowing the situation of insulation breakdown, the end-turn coil of windings in the motor winding insulation structure is modelled by FEM, and field analysis of that is done. For first step, only end-turn coil is modelled and the model is simulated with FEM by approximating the resistivity of metallic foil surrounding insulation layers with having nonlinear property. Next, the result of simulation with nonlinear resistivity are compared with the result of linear resistivity. Because of microscope analysis, there is the problem of generalization but the situation of corona discharge in end-turn coil will be explained from this simulation.

  • PDF

Analysis of Deformation Characteristics for Deep Drawing of Laser-welded Dlank (레이저 용접 소재의 디프 드로잉 성형특성 해석)

  • Kim, Yeong-Seok;Ha, Dong-Ho;Jeong, Gi-Jo;Seo, Man-Seok
    • Transactions of Materials Processing
    • /
    • 제7권6호
    • /
    • pp.519-529
    • /
    • 1998
  • In automotive industries the stamping of laser-welded blank gives many merits which bring about dimensional accuracy, strong body assembly and high productivity. However the welding of blanks with different thickness or/and different strength materials introduces many challenging formability problems for process development and tool design. in this paper the deformation characteristics for deep drawing process of laser-welded blank with different thickness sheets are investigated by experiment as well as by FEM simulation. The blank holding force ratio to avoid the movement of weld line was suggested and compared with the experimental result for cylindrical and rectangular cup drawing process. The optimal location of weld line in laser-welded blank with different thickness sheets is calculated to compensate for the movement of weld line on deep drawing process. In addition the effect of location of weld line on formability is clarified using FEM simulation.

  • PDF

Evolution of strain states during Cross-roll rolling in AA 5052 sheet using Finite Element Method (유한요소 해석을 통한 AA 5052 판재의 Cross-roll 압연시 변형율 상태의 변화)

  • Kim, S.H.;Kim, D.G.;Park, E.S.;Lee, J.S.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.404-407
    • /
    • 2008
  • In the present work, cross-roll rolling was carried out using a rolling mill in which the roll axis is tilted by $7.5^{\circ}$ towards the transverse direction of the rolled sample. The evolution of strain states during cross-roll rolling was investigated by three-dimensional finite element method (FEM) simulation. Parallel to cross-roll rolling, normal-rolling using a conventional rolling mill was also carried out in the same rolling condition for clarifying the effect of cross-roll rolling. It turned out that three shear rate components were all introduced to the rolled sample by the cross-roll rolling process, while only one shear rate component operated during normal-rolling.

  • PDF

Magnetic Field Distribution Analysis of Superconducting Niobium Foil of Linear Type Magnetic Flux Pump using Simulation (시뮬레이션을 이용한 리니어형 자속 플럭스 펌프에서의 초전도 니오븀 박막의 자장분포 해석)

  • Lee, Eung-Ro;Chung, Yoon-Do;Bae, Duck-Kweon;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • 제11권3호
    • /
    • pp.60-64
    • /
    • 2009
  • We investigated an operating characteristic of linear-type magnetic flux pump (LTMFP) as a current compensator under the various conditions. In order to explain the mechanism of the LTMFP, the magnetic behavior of superconducting Nb foil according to pumping actions should be understood. In this paper, the magnetic field analysis of superconducting Nb foil installed in LTMFP has been performed based on the three-dimensional finite element method (3D FEM). Through the simulation analysis, the normal spot region on the superconducting Nb foil is found to be enhanced swiftly over about 20 Hz. The simulated finding agreed with an analytical estimation based on the phenomenon of magnetic diffusion.