• Title/Summary/Keyword: FEM Simulation

Search Result 1,296, Processing Time 0.025 seconds

Collision-induced Derailment Analysis of a Finite Element Model of Rolling Stock Applying Rolling Contacts for Wheel-rail Interaction (차륜-레일 구름접촉을 적용한 철도차량 유한요소 모델의 충돌 기인 탈선거동 해석)

  • Lee, Junho;Koo, Jeongseo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-14
    • /
    • 2013
  • In this paper, a finite element analysis technique of rolling stock models for collision-induced derailments was suggested using rolling contacts for wheel-rail interaction. The collision-induced derailments of rolling stock can be categorized into two patterns of wheel-climb and wheel-lift according to the friction direction between wheel flange and rail. The wheel-climb derailment types are classified as Climb-up, Climb/roll-over and Roll-over-C types, and the wheel-lift derailment types as Slip-up, Slip/roll-over and Roll-over-L types. To verify the rolling contact simulations for wheel-rail interaction, dynamic simulations of a single wheelset using Recurdyn of Functionbay and Ls-Dyna of LSTC were performed and compared for the 6-typical derailments. The collision-induced derailment simulation of the finite element model of KHST (Korean High Speed Train) was conducted and verified using the theoretical predictions of a simplified wheel-set model proposed for each derailment type.

Comparison of the Vibration Principal Stress by Experimental and Numerical Waveform (실측 파형과 수치 파형에 의한 진동주응력 비교)

  • Hong, Woong-Ki;Song, Jeong-Un;Park, Young-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.609-615
    • /
    • 2012
  • In recent years, the development of computer technique was possible to the simulation analysis of the structure caused by ground vibration. Generally, finite element method(FEM) has been used in these structural analysis. In this study, it was calculated to the vibration energy as measuring vibration waveform, and estimated about principal stress due to medium characteristics of the ground as processing dynamic analysis by the vibration energy. The results are as follows : Firstly, the principal stress distribution in all mediums was different due to a medium condition, and the principal stress at concrete medium was represented to difference due to physical characteristics. Secondly, the principal stress by time increasing was represented to maximum amplitude within 0.03 second. And also, the principal stress after maximum amplitude was very large at concrete medium, which was considered to be formed compression or tension range at a medium boundary. Thirdly, the variation of principal stress at concrete medium was represented in the order of RC medium, NC=H medium, NC=S medium. It was considered that the vibration energy propagated fast when a medium have a big elasticity and density.

Stochastic thermo-mechanically induced post buckling response of elastically supported nanotube-reinforced composite beam

  • Chaudhari, Virendra Kumar;Shegokar, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.585-611
    • /
    • 2017
  • This article covenants with the post buckling witticism of carbon nanotube reinforced composite (CNTRC) beam supported with an elastic foundation in thermal atmospheres with arbitrary assumed random system properties. The arbitrary assumed random system properties are be modeled as uncorrelated Gaussian random input variables. Unvaryingly distributed (UD) and functionally graded (FG) distributions of the carbon nanotube are deliberated. The material belongings of CNTRC beam are presumed to be graded in the beam depth way and appraised through a micromechanical exemplary. The basic equations of a CNTRC beam are imitative constructed on a higher order shear deformation beam (HSDT) theory with von-Karman type nonlinearity. The beam is supported by two parameters Pasternak elastic foundation with Winkler cubic nonlinearity. The thermal dominance is involved in the material properties of CNTRC beam is foreseen to be temperature dependent (TD). The first and second order perturbation method (SOPT) and Monte Carlo sampling (MCS) by way of CO nonlinear finite element method (FEM) through direct iterative way are offered to observe the mean, coefficient of variation (COV) and probability distribution function (PDF) of critical post buckling load. Archetypal outcomes are presented for the volume fraction of CNTRC, slenderness ratios, boundary conditions, underpinning parameters, amplitude ratios, temperature reliant and sovereign random material properties with arbitrary system properties. The present defined tactic is corroborated with the results available in the literature and by employing MCS.

Damage prediction in the vicinity of an impact on a concrete structure: a combined FEM/DEM approach

  • Rousseau, Jessica;Frangin, Emmanuel;Marin, Philippe;Daudeville, Laurent
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This article focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. The proposed approach is then applied to a rock impact on a concrete slab in order to validate the coupled method and compare computation times.

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드 변압기의 덕트에 따른 열해석 특성 연구)

  • 조한구;이운용;박영두
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.348-352
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and ow loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by finite element method(FEM) to analyze winding temperature rise. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

A New Measurement Method of Dielectric Constants Applied the Principles of Cross Capacitance (Cross Capacitance 원리를 작용한 새로운 유전상수 측정방법 제안)

  • Kim, Han-Jun;Lee, Rae-Duk;Kang, Jeon-Hong;Yu, Kwang-Min;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1084-1087
    • /
    • 2002
  • The guard-ring type 3-terminal parallel plate electrodes proposed by ASTM D 150-81 and IEC 250 have been widely used for measurement of dielectric constants of solid dielectrics. However the method using this electrodes causes many uncertainty associated with the measurement errors of the diameter of the guarded electrode. the gap between guarded and guard-ring electrode. the distance of two active electrodes(the thickness of specimen), the roughness and contamination of surface of electrode and specimen. close adherence grade of electrode and specimen. In this paper. a new electrode system of cross capacitance type based on Thompson-Lampard theorem is designed and is employed for the measurement of dielectric constant. The results of simulation of guard-ring electrode and cross capacitance electrode using FEM program show that distance measurement between two electrodes in guard-ring electrode produces large uncertainty. on the other hand this effect in cross capacitance electrode is negligible. Furthermore. the air gap effects in the cross capacitance electrode is 5.6 times less sensitive than that in guard-ring electrode by assuming air gap of $50{\mu}m$.

  • PDF

Effects of Phosphorus and in-situ Post-heat Pulse Conditions on Resistance Spot Weldability of High Si DP980 Steel Sheet (고Si DP980강 스폿 용접 특성에 미치는 Phosphorus (P) 및 in-situ 후열처리 펄스 조건의 영향)

  • Choi, Du-Youl
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.21-26
    • /
    • 2015
  • Recently, application of UHSS(Ultra High Strength Steels) whose tensile strength is over 1000MPa to car body structure are growing due to great needs for light weighting and improved crash worthiness. However, their poor weldability is one of obstacles to expand selecting to car body. In this study, effect of Phosphorus contents on resistance spot weldability of high elongation DP980 steel whose Si content is over 1% was investigated. The cross tension strength (CTS) was decreased showing partial interface fracture as Phosphorus content increase because of solidification segregation of Phosphorus. In order to improve resistance spot weldability by modification of welding condition, in-situ post-weld heating pulse was introduced after main pulse. The optimum cooling time between main and post pulse and post-pulse current condtion were determined through FEM welding simulation and DOE tests. The CTS was increased about 1.5 time showing plug fracture. The decrease of Phosphorus segregation was found to be a major reason for weld ductility and CTS improvement.

Computer simulation of electric field distribution in FALC process (FALC 공정에서의 전계 분포 전산모사)

  • 정찬엽;최덕균;정용재
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • The crystallization behavior of amorphous silicon is affected by direction and intensity of electric field in FALC(Field-Aided Lateral Crystallization). Electric field was calculated in a simplified model using conductivity data of Mo, a-Si, $SiO_2$and boundary conditions for electric potential at the electrodes. The magnitude of electric field intensity in each corner of cathode was much larger than that in the center of patterns, and the electric field direction was 50~60 degree outside to cathode. And electric field intensity at a relatively small pattern was larger than that of a large pattern.

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

Transient Response Analysis of Linear Dynamic System with Random Properties (확률론적 특성을 갖는 선형 동적계의 과도 응답 해석)

  • 김인학;독고욱
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.125-131
    • /
    • 1997
  • Most dynamic systems have are known to various random properties in excitation and system parameters. In this paper, a procedure for response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameters and responses with random properties are modeled by perturbation technique, and then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an applicative example, the transient response is considered for systems of single degree of freedom with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF