• Title/Summary/Keyword: FEM Simulation

Search Result 1,298, Processing Time 0.022 seconds

A 3-D Steady-State Analysis of Thermal Behavior in EHV GIS Busbar

  • Lei, Jin;Zhong, Jian-ying;Wu, Shi-jin;Wang, Zhen;Guo, Yu-jing;Qin, Xin-yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.781-789
    • /
    • 2016
  • Busbar has been used as electric conductor within extra high voltage (EHV) gas insulated switchgear (GIS), which makes EHV GIS higher security, smaller size and lower cost. However, the main fault of GIS is overheating of busbar connection parts, circuit breaker and isolating switch contact parts, which has been already restricting development of GIS to a large extent. In this study, a coupled magneto-flow-thermal analysis is used to investigate the thermal properties of GIS busbar in steady-state. A three-dimensional (3-D) finite element model (FEM) is built to calculate multiphysics fields including electromagnetic field, flow field and thermal field in steady-state. The influences of current on the magnetic flux density, flow velocity and heat distribution has been investigated. Temperature differences of inner wall and outer wall are investigated for busbar tank and conducting rod. Considering the end effect in the busbar, temperature rise difference is compared between end sections and the middle section. In order to obtain better heat dissipation effect, diameters of conductor and tank are optimized based on temperature rise simulation results. Temperature rise tests have been done to validate the 3-D simulation model, which is observed a good correlation with the simulation results. This study provides technical support for optimized structure of the EHV GIS busbar.

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

FEM Analysis of Conduction Noise Absorbers in Microstrip Line (마이크로스트립 라인에서 유한요소법을 이용한 전도노이즈 흡수체의 성능해석)

  • Kim, Sun-Tae;Kim, Sun-Hong;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.242-245
    • /
    • 2007
  • Conduction noise attenuation by composite sheets of high magnetic and dielectric loss has been analyzed by using electromagnetic field simulator which employs finite element method. The simulation model consists of microstrip line with planar input/output ports and noise absorbers (magnetic composite sheets containing iron flake particles as absorbent fillers). Reflection and transmission parameters $(S_{11}\;and\;S_{21})$ and power loss are calculated as a function of frequency with variation of sheet size and thickness. The simulated value is in good agreement with measured one and it is demonstrated that the proposed simulation technique can be effectively used in the design and characterization of noise absorbing materials in the RF transmission lines.

Simulation of Horizontal Thin-film Thermoelectric Cooler for the Mobile Electronics Thermal Management (모바일 전자기기의 열점 제어를 위한 수평형 박막 열전 냉각 소자의 모사 해석)

  • Park, Sangkug;Park, Hong-Bum;Joo, Young-Chang;Joo, Youngcheol
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.17-21
    • /
    • 2017
  • Horizontal thin-film thermoelectric cooler has been simulated using a commercial software (ANSYS Workbench Thermal-electric). The thermoelectric cooler consists of thin-film n-type $Bi_2Te_3$, p-type $Sb_2Te_3$ thermoelectric elements, and Au electrode, respectively. The hot spot was placed under the center of device which represents Joule heating. Numerical analysis was conducted by geometric variable, and a maximum temperature difference of $13^{\circ}C$ was obtained. As from the simulation parameters, we presented an optimized design for high efficiency cooling.

Feasibility Study of Cryogenic Cutting Technology by Using a Computer Simulation and Manufacture of Main Components for Cryogenic Cutting System (컴퓨터 시뮬레이션을 이용한 극저온 절단 기술 적용성 연구 및 극저온 절단 시스템 주요 부품 제작)

  • Kim, Sung-Kyun;Lee, Dong-Gyu;Lee, Kune-Woo;Song, Oh-Seop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.115-124
    • /
    • 2009
  • Cryogenic cutting technology is one of the most suitable technologies for dismantling nuclear facilities due to the fact that a secondary waste is not generated during the cutting process. In this paper, the feasibility of cryogenic cutting technology was investigated by using a computer simulation. In the computer simulation, a hybrid method combined with the SPH (smoothed particle hydrodynamics) method and the FE (finite element) method was used. And also, a penetration depth equation, for the design of the cryogenic cutting system, was used and the design variables and operation conditions to cut a 10 mm thickness for steel were determined. Finally, the main components of the cryogenic cutting system were manufactures on the basis of the obtained design variables and operation conditions.

  • PDF

Absorbing Boundary Conditions and Parallelization for Waveguide Electromagnetic Analysis Using Finite Element Method (유한요소법을 이용한 도파관 전자기 해석의 흡수경계조건 고찰 및 병렬화)

  • Park, Woobin;Kim, Moonseong;Lee, Woochan
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.67-76
    • /
    • 2022
  • Power and signal transmission using electromagnetic waves are essential in modern times, and a guided structure is needed to transmit electromagnetic waves efficiently through the desired path. This paper performed an electromagnetic simulation using the in-house code for the 2-D/3-D waveguide using the finite element method. The accuracy of the analysis was verified by comparing it with the results of HFSS, a representative electromagnetic wave simulation software. In addition, the performance of the Absorbing Boundary Condition (ABC), which is essential to truncate the infinite computational domain for computational electromagnetics, was analyzed. Finally, the parallelization technique was applied to accelerate the simulation speed, demonstrating performance improvement.

Transient Structural Analysis of Piston and Connecting Rods of Reciprocating Air Compressor Using FEM (FEM을 이용한 왕복동 공기압축기의 피스톤 및 커넥팅로드의 구조해석)

  • Pham, Minh-Ngoc;Yang, Chang-Jo;Kim, Jun-Ho;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.393-399
    • /
    • 2017
  • In a reciprocating compressor, the piston and connecting rod are important parts. Excess mechanical stress on these parts may cause damage, and broken parts are expensive and difficult to replace. Therefore, it is necessary to analyze the mechanical stress affecting durability and longevity. The main purpose of this study was to identify locations of maximum stress on pistons and connecting rods. Based on dynamic calculation of the working process of a specific air compressor, an analysis of piston and connecting rod performance has been completed. A three-dimensional model for the air compressor's pistons and connecting rods was built separately, and FEM analysis of these components was carried out using a numerical method. The pistons were loaded by pressure which was changed according to crankshaft angle without thermal boundary conditions. The simulation results were used to predict and estimate stress concentration as well as the value of this stress on pistons and connecting rods. The maximum equivalent stress calculated are over 190 MPa on pistons and 123 MPa on connecting rods at crank angle $135^{\circ}$ and $225^{\circ}$ but these are under tensile yield strength. Besides, the calculated safety factors of connecting rods and pistons is higher than 1. Moreover, the results obtained can be used to provide manufacturers with references to optimize the design of pistons and connecting rods for reciprocating compressors.

Characteristics of Bio-impedance for Implantable Electrode Design in Human Skin (인간 피부에 삽입형 전극설계를 위한 생체임피던스 특성)

  • Kim, Min Soo;Cho, Young-Chang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.4
    • /
    • pp.9-16
    • /
    • 2014
  • Electrode contact resistance is a crucial factor in physiological measurements and can be an accuracy limiting factor to perform electrical impedance measurements. The electrical bio-impedance values can be calculated by the conductivity and permittivity of underlying tissue using implant electrode in human skin. In this study we focus on detecting physiological changes in the human skin layers such as the sebum layer, stratum corneum layer, epidermis layer, dermis layer, subcutaneous fat and muscle. The aim of this paper is to obtain optimal design for implantable electrode at subcutaneous fat layer through the simulation by finite element methods(FEM). This is achieved by evaluating FEM simulations geometrically for different electrodes in length(50 mm, 70 mm), in shape(rectangle, round square, sexangle column), in material(gold) and in depth(22.325 mm) based on the information coming from the subcutaneous fat layer. In bio-impedance measurement experiments, according to electrode shapes and applied voltage, we have ascertained that there was the highest difference of bio-impedance in subcutaneous fat layer. The methodology of simulation can be extended to account for different electrode designs as well as more physical phenomena that are relevant to electrical impedance measurements of skin and their interpretation.

Two-Dimensional Numerical Simulation of GaAs MESFET Using Control Volume Formulation Method (Control Volume Formulation Method를 사용한 GaAs MESFET의 2차원 수치해석)

  • Son, Sang-Hee;Park, Kwang-Mean;Park, Hyung-Moo;Kim, Han-Gu;Kim, Hyeong-Rae;Park, Jang-Woo;Kwack, Kae-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.48-61
    • /
    • 1989
  • In this paper, two-dimensional numerical simulation of GaAs MESFFT with 0.7${\mu}m$ gate length is perfomed. Drift-diffusion model which consider that mobility is a function of local electric field, is used. As a discretization method, instead of FDM (finite difference method) and FEM (finite element method), the Control-Volume Formulation (CVF) is used and as a numerical scheme current hybrid scheme or upwind scheme is replaced by power-law scheme which is very approximate to exponential scheme. In the process of numerical analysis, Peclet number which represents the velocity ratio of drift and diffusion, is introduced. And using this concept a current equation which consider numerical scheme at the interface of control volume, is proposed. The I-V characteristics using the model and numerical method has a good agreement with that of previous paper by others. Therefore, it is confined that it may be useful as a simulator for GaAs MESFET. Besides I-V characteristics, the mechanism of both velocity saturation in drift-diffusion model is described from the view of velocity and electric field distribution at the bottom of the channel. In addition, the relationship between the mechanism and position of dipole and drain current, are described.

  • PDF