• Title/Summary/Keyword: FEM Shear deformation

Search Result 139, Processing Time 0.019 seconds

Texture and Microstructure in AA3004 after Continuous Confined Strip Shearing (CCSS 변형된 AA 3004 판재의 집합조직과 미세조직)

  • 김훈동;정영훈;황병복;최호준;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • A new deformation process termed "continuouis confined sup shearing" (CCSS) has been developed for shear deformation of metallic sheets. The tools of CCSS were designed to provide a constant shear deformation of the order of 0.5 per pass while preserving the original sheet shape. In order to clarify the evolution of texture and microstructure during CCSS, strips of the aluminum alloy AA3004 were deformed by CCSS in up to three passes. FEM results indicated that CCSS provides a quite uniform shear deformation at thickness layers close to the strip center, although the deformation is not homogeneous in the die channel, in particular at the surface layers. The rolling texture of the initial sheet decreased during CCSS, and preferred orientations along two fibers developed. However, with an increasing number of CCSS passes the deformation texture did not develop futher. The evolution of annealing textures depended on the number of CCSS passes. A strong {112}<110> component in the deformation texture led to the formation of a strong {111}<112) orientation in the annealing texture. Observations by TEM and EBSD revealed the formation of very fine grains of ∼1.0$\mu\textrm{m}$ after CCSS.

  • PDF

Hysteretic Characteristics and Deformation Modes of Steel Plate Shear Walls According to Aspect Ratios and Width-to-Thickness Ratios (강판 형상비 및 판폭두께비에 따른 강판전단벽의 변형모드 및 이력특성)

  • Shin, Dong-Hyeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.37-45
    • /
    • 2024
  • Steel plate shear walls (SPSWs) have been recognized as an effective seismic-force resisting systems due to their excellent strength and stiffness characteristics. The infill steel plate in a SPSW is constrained by a boundary frame consisting of vertical and horizontal structural members. The main purpose of this study was to investigate deformation modes and hysteretic characteristics of steel plate shear walls (SPSWs) to consider the effects of their aspect ratios and width-to-thicness ratios. The finite element model (FEM) was establish in order to simulate cyclic responses of SPSWs which have the two-side clamped boundary condition and made of conventional steel grade. The stress distribution obtained from the FEA results demonstrated that the principal stresses on steel plate with large thickness-to-width ratio were more uniformly distributed along its horizontal cross section due to the formation of multiple struts.

Displacements and stresses in pressurized thick FGM cylinders with exponentially varying properties based on FSDT

  • Ghannad, Mehdi;Gharooni, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.939-953
    • /
    • 2014
  • Using the infinitesimal theory of elasticity and analytical formulation based on the first-order shear deformation theory (FSDT) is presented for axisymmetric thick-walled cylinders made of functionally graded materials under internal and/or external uniform pressure. The material is assumed to be isotropic heterogeneous with constant Poisson's ratio and radially exponentially varying elastic modulus. At first, general governing equations of the FGM thick cylinders are derived by assumptions of the FSDT. Then the obtained equations are solved under the generalized clamped-clamped conditions. The results are compared with the findings of both FSDT and finite element method (FEM).

Analysis of higher order composite beams by exact and finite element methods

  • He, Guang-Hui;Yang, Xiao
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.625-644
    • /
    • 2015
  • In this paper, a two-layer partial interaction composite beams model considering the higher order shear deformation of sub-elements is built. Then, the governing differential equations and boundary conditions for static analysis of linear elastic higher order composite beams are formulated by means of principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this problem is also developed, and the results of the proposed FE program are in good agreement with the analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, parametric studies are performed to investigate the influences of parameters including rigidity of shear connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the distribution of internal forces and the stresses.

A refined functional and mixed formulation to static analyses of fgm beams

  • Madenci, Emrah
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • In this study, an alternative solution procedure presented by using variational methods for analysis of shear deformable functionally graded material (FGM) beams with mixed formulation. By using the advantages of $G{\hat{a}}teaux$ differential approaches, a refined complex general functional and boundary conditions which comprises seven independent variables such as displacement, rotation, bending moment and higher-order bending moment, shear force and higher-order shear force, is derived for general thick-thin FGM beams via shear deformation beam theories. The mixed-finite element method (FEM) is employed to obtain a beam element which have a 2-nodes and total fourteen degrees-of-freedoms. A computer program is written to execute the analyses for the present study. The numerical results of analyses obtained for different boundary conditions are presented and compared with results available in the literature.

Evolution of Strain States and Textures During Symmetrical/Asymmetrical Cold Rolling (냉간 대칭/비대칭 압연시 압연변형율 상태와 집합조직의 형성)

  • Huh Moo-Young;Lee Jae-Pil;Lee Jae-Hyup
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.19-24
    • /
    • 2004
  • Symmetrical and asymmetrical rolling was performed in AA 1050 sheets. Asymmetrical rolling was carried out by using different roll velocities of upper and lower rolls. The effect of the reduction per rolling pass on the formation of textures and microstructures during symmetrical and asymmetrical rolling was studied. In order to intensify the shear deformation, symmetrical and asymmetrical rolling was carried out without lubrication. The strain states associated with rolling were investigated by simulations with the finite element method (FEM). A fairly homogeneous residual shear strain throughout the sheet thickness was observed after asymmetrical rolling. Symmetrical rolling with a high friction gave rise to a strong net shear strain gradient in the sheet thickness.

  • PDF

A Shaving Shear-Welding Process for Overlapped Aluminum Plates (중첩된 알루미늄 판재의 셰이빙 전단접합에 관한 연구)

  • Shang, L.;Kim, T.H.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.467-472
    • /
    • 2012
  • Shaving shear-welding is a solid-state welding process, which utilizes plastic deformation of surplus material. The solid-state nature of this process contributes to high integrity and strength of the weld. The objective of this study was to investigate the effects of process variables on the material flow patterns and identify the process condition for obtaining the best weld. FEM simulations were carried out along with experimental characterizations. The results showed the importance of the cutter angles and the overlap lengths, and helped attain the optimum shaving shear-welding die and the best process condition.

Free vibration and harmonic response of cracked frames using a single variable shear deformation theory

  • Bozyigit, Baran;Yesilce, Yusuf;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.33-54
    • /
    • 2020
  • The aim of this study is to calculate natural frequencies and harmonic responses of cracked frames with general boundary conditions by using transfer matrix method (TMM). The TMM is a straightforward technique to obtain harmonic responses and natural frequencies of frame structures as the method is based on constructing a relationship between state vectors of two ends of structure by a chain multiplication procedure. A single variable shear deformation theory (SVSDT) is applied, as well as, Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT) for comparison purposes. Firstly, free vibration analysis of intact and cracked frames are performed for different crack ratios using TMM. The crack is modelled by means of a linear rotational spring that divides frame members into segments. The results are verified by experimental data and finite element method (FEM) solutions. The harmonic response curves that represent resonant and anti-resonant frequencies directly are plotted for various crack lengths. It is seen that the TMM can be used effectively for harmonic response analysis of cracked frames as well as natural frequencies calculation. The results imply that the SVSDT is an efficient alternative for investigation of cracked frame vibrations especially with thick frame members. Moreover, EBT results can easily be obtained by ignoring shear deformation related terms from governing equation of motion of SVSDT.

In-Plane Vibration Analysis of Curved Beams Considering Shear Deformation Using DQM (전단변형이론 및 미분구적법을 이용한 곡선보의 내평면 진동해석)

  • Kang, Ki-Jun;Kim, Byeong-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.793-800
    • /
    • 2006
  • DQM(differential quadrature method) is applied to computation of eigenvalues of the equations of motion governing the free in-plane vibration fur circular curved beams including both rotatory inertia and shear deformation. Fundamental frequencies are calculated for the members with clamped-clamped end conditions and various opening angles. The results are compared with numerical solutions by other methods for cases in which they are available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

  • PDF

Strength of connection fixed by TOBs considering out-of-plane tube wall deformation-Part 1: Tests and numerical studies

  • Wulan, Tuoya;Wang, Peijun;Xia, Chengxin;Liu, Xinyu;Liu, Mei;Liu, Fangzhou;Zhao, Ou;Zhang, Lulu
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • This paper presents a study on the behavior of a bolted T-stub to square tube connection using Thread-fixed One-side Bolts (TOBs) through tests and numerical simulations. It outlines a research work of four connections with focus on the failure modes and strengths of the connection under tensile load. It was observed that the thread anchor failure caused by shear failure of hole threads controlled the final failure of the connection in the tests. Meanwhile, the out-of-plane deformation of tube wall resulted in the contact separation between hole threads and bolt threads, which in turn reduced the shear strength of hole threads. Finite element models (FEMs) allowing for the configuration details of the TOBs fixed connection are then developed and compared with the test results. Subsequently, the failure mechanism of hole threads and stress distribution of each component are analyzed based on FEM results. It was concluded that the ultimate strength of connection was not only concerned with the shear strength of hole threads, but also was influenced by the plastic out-of-plane deformation of tube wall. These studies lay a foundation for the establishment of suitable design methods of this type of connection.