• 제목/요약/키워드: FEM Process Design

검색결과 516건 처리시간 0.027초

FEM을 이용한 Micro-Electromagnetic Clutch 토크해석 (Study on Torque Analysis of Micro-Electromagnetic Clutch by Using FEM)

  • 박창호;조종두;김명구;반강
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.60-65
    • /
    • 2005
  • This study tries to analyzes the static friction torque that generated in a micro-electromagnetic clutch by using FEM. For the purpose of design change and optimization of the micro-electromagnetic clutch, the static friction torque prediction is very important. We construct the axi symmetric FEM model for analyze the static friction torque and the real material properties are substituted to the FEM model. For a test, predicted static friction torque is compared with experimental one to discuss the rationality of torque analysis process. The analytical result agrees well to experimental data. explaining the validity of the mathematical process and FEM model.

Optimization of Magnet Pole of BLDC Motor by Experimental Design Method

  • Kim, Jee-Hyun;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권2호
    • /
    • pp.84-89
    • /
    • 2003
  • The finite element method (FEM) is typically used in the process of motor design. However, the FEM requires computation time, Therefore, decreasing the number of FEM simulations may also decrease the simulation cost. Several optimal design methods overcoming this problem have been recently studied. This paper investigates the optimal design of the magnet pole of a BLDC motor through reducing simulation cost. The optimization minimizes the magnet volume and limits the average and cogging torques to certain values. In this paper, the response surface methodology and Taguchi's table for reducing the number of FEM simulations are used to approximate two constraints. The optimization result shows that the presented strategy is satisfactorily performed.

연성파괴이론에 의한 마그네슘 합금 EL-cover 부품 온간 성형 공정 설계 (Design for Warm Forming of a Mg El-cover Part Using a Ductile Fracture Criterion)

  • 김상우;이영선
    • 소성∙가공
    • /
    • 제23권4호
    • /
    • pp.238-243
    • /
    • 2014
  • Recently, magnesium alloys have been widely used in the automotive, aerospace and electronics industries with the advantages of high specific strength, excellent machinability, high electrical conductivity, and high thermal conductivity. Deep drawn magnesium alloys not only meet the demands environmentally and the need for lighter products, but also can lead to remarkably improved productivity and more rapid qualification of the product The current study reports on a failure prediction procedure using finite element modeling (FEM) and a ductile fracture criterion and applies this procedure to the design of a deep drawing process. Critical damage values were determined from a series of uniaxial tensile tests and FEM simulations. They were then expressed as a function of strain rate and temperature. Based on the plastic deformation histories obtained from the FEM analyses of the warm drawing process and the critical damage value curves, the initiation time and location of fracture were predicted. The proposed method was applied to the process design for fabrication of a Mg automotive compressor case and verified with experimental results. The final results indicate that a Mg case part 39% lighter than an Al die casting part can be produced without any defects.

와이어 하네스의 압착공정에서 설계변수가 압축률에 미치는 영향 연구 (Effects of Design Variables on Compression Rate of Wire in Connector Crimping Process of Wire Harness Using FEM)

  • 구선모;최현순;김영석
    • 소성∙가공
    • /
    • 제19권5호
    • /
    • pp.305-310
    • /
    • 2010
  • Recently industry of motor vehicle is making a gradual progress of automotive electric components. According to this step, wire harness equipped at motor vehicle is also increased. The most important component at the wire harness is electric connector. At the manufacturing process of electric connector, exactly at the crimping process, design variables, such as clamping-height, clamping-width and clamping die shape are critical parameters to assure satisfactory harness shape in clamping process of electric connector. In this study we have performed FEM simulation for clamping process and clarified the effect of design variables on compression rate of wire.

FEM을 이용한 진공유리 패널의 지지대 설계변수 설정 (The Pillar Design Variable Determination up of the Vacuum Glazing Panel using FEM)

  • 김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.101-106
    • /
    • 2011
  • There are various methods in the flat panel display manufacture. The cost reduction effect is very big in case of using the screen printing method. The screen printing method is much used in the process of forming PDP barrier and can apply to the process of arranging the pillars for maintaining the vacuum gap of the vacuum glazing panel. The pillar which is one of the core elements for comprising vacuum glazing maintains the vacuum gap overcoming the vacuum pressure difference with the atmospheric pressure generated in vacuum glazing. At the same time, the deformation phenomenon by vacuum pressure is relived. In this paper, by using FEM about three considered in the pillar design and arrangement kinds of limiting factors, the simulation was performed. The pillar optimum arrangement method at within the maximum allowable tensile stress and heat transfer coefficients according to the arrangement try to be presented based upon the analyzed result data review and this validity tries to be verified by FEM.

A Study on the Multi-row Progressive Die for Thin Sheet Metal Forming by Computer Simulation

  • Sim, Sung-Bo;Kim, Chung-Hwan
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.75-80
    • /
    • 2008
  • The progressive die performs a work of sheet metal processes with a piercing, notching, embossing, bending, drawing, cut-off etc. in many kinds of pressing. Now a days, these processes have been evaluated as a advanced tooling method to increase the productivity and high quality assurance. The first step analyzing of die design is production part review, then the arrangement drawing of product design and strip process layout design should be done as a next steps with a FEM simulation for its problem solution. After upper procedure were peformed, it was started to make the die, then tryout and its revision of the die and product quality, safety, productivity etc. were done continually. For the all of these process, we mobilized the theory and practice of sheet metal forming, die structure, the function and activity of die components, and the others of die machining, die material, heat treatment and know‐how so on. In this study the features of representative are production part analyzing through the FEM simulation of bending area with a considering spring back problem by DEFORM.

  • PDF

유한요소법을 이용한 자동차 로어암의 액압성형 해석 (Analysis of Hydroforming Process for an Automobile Lower Arm by FEM)

  • 김정;장유철;강성종;강범수
    • 소성∙가공
    • /
    • 제10권7호
    • /
    • pp.534-542
    • /
    • 2001
  • Tubular hydroforming has attracted increased attention in the automotive industry recently. In this study, a professional finite element program for analysis and design of tube hydroforming processes, has been developed, called HydroFORM-3D, which is based on a rigid-plastic model. With the developed program HydroFORM-3D, the hydroforming process for an automobile lower arm is analyzed and designed. The manufacturing process for a lower arm consists of tube bending, preforming, and final hydroforming. To accomplish successful hydroforming process design, thorough investigation on proper combination of process parameters such as internal hydraulic pressure, axial feeding, and tool geometry is required. This paper describes the influences of forming conditions on the hydroforming of a lower arm by using simulation to predict strain and tube shape during bending, preforming, and final hydroforming processes.

  • PDF

Process Metamorphosis and On-Line FEM for Mathematical Modeling of Metal Rolling-Part I: Theory

  • Zamanian, A.;Nam, S.Y.;Shin, T.J.;Hwang, S.M.
    • 소성∙가공
    • /
    • 제28권2호
    • /
    • pp.83-88
    • /
    • 2019
  • This paper introduces a new concept - on-line FE model, as applied to metal rolling. The new technology allows for completion of process simulation within a tiny fraction of a second without loss of high-level prediction accuracy inherent to FEM. The three steps of an on-line FE model design namely, process metamorphosis, mesh design, and process variable design, are described in detail. The procedure is demonstrated step by step through designing actual on-line models for the prediction of the dog-bone profile in edge rolling. The validity and prediction accuracy of the on-line FE models are analyzed and discussed.

FEM과 ADS를 이용한 최적설계에 관한 연구 (A Study on the Optimum Design Using FEM and ADS)

  • 김민주;이승수;박진형;김세민;전언찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.146-151
    • /
    • 2001
  • This study is an investigation for the ADS optimum design by using FEM. We write out program which express ADS perfectly and reduce the required time for correcting of model to the minimum in solution and manufacture result. We complete algorithm which can plan optimum forming of model by feedback error information in CAE. For that, we draw up ADS program which modeling rachet wheel by using visual LISP and telegraph to ANSYS, structural solution program, we can solve stress solution. Then we correct model by feedback date obtaining in solution process, repeat course following stress solution again and do modeling rachet wheel for optimum forming. That is our aim. As a result of experience, we can develope automatic design program using Visual LISP and exhibit ADS as modeling third dimension CAD for optimum design. Also, we develop optimum design algorithm using ADS and FEM. In rachet wheel, greatest equivalence stress originates in key groove comer and KS standard is proved the design for security.

  • PDF

주조공정에서의 효율적인 열응력 해석을 위한 이종해석기법의 연계 (Combination of Different Numerical Methods for Efficient Thermal Stress Analysis of Casting Process)

  • 곽시영;임채호
    • 대한기계학회논문집A
    • /
    • 제34권8호
    • /
    • pp.1051-1057
    • /
    • 2010
  • 본 논문에서 유한차분법(FDM)과 유한요소법(FEM)을 연계하여 주조공정 해석을 수행하는 이종해석기법을 제안하였다. 수치해석기법으로는 FDM, FEM, BEM 등 다양한 기법이 있으며, 대부분의 공학문제는 각각의 현상에 적합한 수치해석기법을 사용하여 해석을 수행하고 있다. 일반적으로, FDM 또는 FVM 은 유동 및 열전달 해석에, FEM 은 열응력 해석에 많이 적용되고 있지만 복합적인 공학 문제를 해결하기 위해서 각각 수치해석기법을 연동한 해석의 필요성이 점점 증가하고 있다. 따라서, 본 논문에서는 3 차원 공간에서 FDM 을 사용하여 응고 및 열 전달 해석을 수행하고, 계산된 온도 데이터를 FEM 해석장에 적합하게 변환하여 열응력 해석을 수행하는 FDM/FEM연계해석 방법을 제시하였다. 그리고 제시한 해석방법을 주조 공정 해석에 적용한 결과, 요소생성 등의 해석작업과 해석속도 면에서 효율적으로 해석을 수행할 수 있었다.