• 제목/요약/키워드: FEM Model

Search Result 2,127, Processing Time 0.027 seconds

Study on the Torque Calculation of Touch Free Gear Using Permanent Magnet (영구자석형 비접촉식 동력전달 기어의 전달토크에 관한 연구)

  • Boo Kwangsuck;Choi Young;Yeo Hongtae;Lee Jongil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.119-126
    • /
    • 2004
  • Permanent magnetic gears are magneto-mechanical devices that are widely used to replace the ordinary mechanical gear and to transmit torque without the mechanical contact. This study investigates the characteristics of touch free permanent magnetic gear according to the employing systems. The effect of the magnetic torque is analyzed by using 3 dimensional Finite Element Method (FEM). To estimate the transmission torque of FEM model, the numerical results are compared with the experimental results. The influences of geometry size, magnet number on transmission torque are obtained. As results of this paper, it is confirmed that the transmission torque behavior is associated with the configuration of the magnet numbers and the air gap between the two permanent magnetic gears.

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of Flux Switching Motor using RSM & FEM (반응표면법과 유한요소법을 이용한 플럭스 스위칭 전동기의 최대토크밀도와 최저토크리플을 위한 최적설계)

  • Kim, Young-Hyun;Lee, Jung-Ho;Kim, Nam-Hoon;Koo, Bon-Sam;Kim, Chan-Hui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.549-554
    • /
    • 2010
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Flux Switching Motor (FSM) using RSM & FEM. The focus of this paper is to find a design solution through the comparison of torque density and torque ripple according to rotor shape variations. And then, a central composite design(CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

Thermal Analysis of Automotive Disc Brake Using FFT-FEM (FFT-FEM을 이용한 자동차용 디스크 브레이크의 열 해석)

  • Choi, Ji-Hoon;Kim, Do-Hyung;Lee, In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1253-1260
    • /
    • 2001
  • Transient thermal analysis of a three-dimensional axisymmetric automotive disk brake is presented in this paper. Temperature fields are obtained using a hybrid FFT-FEM scheme that combines Fourier transform techniques and finite element method. The use of a fast Fourier transform algorithm can avoid singularity problems and lead to inexpensive computing time. The transformed problem is solved with finite element scheme for each frequency domain. Inverse transforms are then performed for time domain solution. Numerical examples are presented for validation tests. Comparisons with analytical results show very good agreement. Also, a 3-D simulation, based upon an automotive brake disk model is performed.

FEM Analysis of Turning Multi-layer Metal (다중 적층 금속의 선삭가공에 대한 FEM 해석)

  • Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.57-63
    • /
    • 2011
  • The aim of this study is to analyze turning process using commercial FEM simulation code. Various simulation models of orthogonal cutting process for 3 layers of metallic material have been simulated and analyzed. The workpiece material used for the orthogonal plane-strain metal cutting simulation consists of three layers, which are Allow Tool Steel, Aluminum and Stainless Steel. The finite element model is composed of a deformable workpiece and a rigid tool. The tool penetrates through the workpiece at a constant speed and constant feed rate. As an analytical result, detailed cutting temperature, strain, pressure, residual stress for both a tool and each layer of workpiece were obtained during the turning process. It has been closely observed that the chip flow curve deforms continuously.

FEM analysis of Quartz oscillator considering dimensions of electrode (전극형상을 고려한 수정진동자 해석 기법 연구)

  • 박승배;김종정;이덕훈;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.543-546
    • /
    • 2001
  • So far, the design methods of quartz crystal resonator have been developed. Recently, as the electronic package and semiconductor modules become smaller, the need to minimize the sizes of crystal components grows larger. but Minimizing crystal plate sizes has limitations because its temperature-frequency characteristics is worse and unwanted resonances occur. so appropriate design of electrode size and crystal plates is necessary. In this palter, Two-dimensional governing equations for electroded piezoelectric crystal plates with general symmetry have been solved from deduced equations from three-dimensional equations of linear piezoelectricity in most cases. In practice, electroded piezoelectric crystal plates have three-dimensional geometry, so simplified 2-dimensional equations and 2-D modeling are insufficient for explaining its resonance modes and characteristics. So, three-dimensional FEM(finite element method) analysis is done and its effectiveness is verified from analyzing practical crystal resonator model.

  • PDF

Parametric design for mechanical structure using knowledge-based system (역학적 구조에 대한 Knowledge-based 시스템을 이용한 파라메트릭 설계)

  • 이창호;김병인;정무영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1018-1023
    • /
    • 1993
  • In mechanical structure design area, many FEM (Finite Element Method) packages are used. But the design using FEM packages depends on an iterative trial and error manner and general CAD systems cannot cope with the change of parameters. This paper presents a methodology for building a designing system of a mechanical structure. This system can generate the drawing for a designed structure automatically. It consists of three steps: generation of a structure by selection of the parameters, stress analysis, and generation of a drawing using CAD system. FEM module and parametric CAD module are developed for this system. Inference engine module generates the parameters with a rule base and a model base, and also evaluates the current structure. The parametric design module generates geometric shapes automatically with given dimension. Parametric design is implemented with the artificial intelligent technique. In older to the demonstrate the effectiveness of the developed system, a frame set of bicycle was designed. The system was implemented on an SUN workstation using C language under OpenWindows environment.

  • PDF

FEM Analysis for Performance Evaluation of Seal in Universal Joint Bearing (유니버설 조인트 베어링용 Seal의 성능평가를 위한 유한요소해석)

  • 김태완;문석만;구영필;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.571-574
    • /
    • 2000
  • Seals in universal joint bearing are a important component reinforcing lubrication performance by holding a lubricant and preventing infiltration of dust, moisture, etc. There is a great difference in seal performance according to seal shape and bonding position. Therefore, in this study, as for the lib type seal and O-ring type seal, FEM analysis are conducted using Mooney-Rivlin Model. The results are indicate that O-ring having higher contact stress and larger contact area than lib type is more profitable.

  • PDF

Modeling of Groundwater Flow Using the Element-Free Galerkin (EFG) Method

  • Park, Yu-Chul;Darrel I. Leap
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.77-80
    • /
    • 2001
  • The element-free Galerkin (EFG) method is one of meshless methods, which is an efficient method of modeling problems of fluid or solid mechanics with complex boundary shapes and large changes in boundary conditions. This paper discusses the theory of the EFG method and its applications to modeling of groundwater flow. In the EFG method, shape functions are constructed based on the moving least square (MLS) approximation, which requires only set of nodes. The EFG method can eliminate time-consuming mesh generation procedure with irregular shaped boundaries because it does not require any elements. The coupled EFG-FEM technique was introduced to treat Dirichlet boundary conditions. A computer code EFGG was developed and tested for the problems of steady-state and transient groundwater flow in homogeneous or heterogeneous aquifers. The accuracy of solutions by the EFG method was similar to that by the FEM. The EFG method has the advantages in convenient node generation and flexible boundary condition implementation.

  • PDF

Finite Element Analysis of Two Rectangular Plates Coupled with Fluid (유체와 연성된 두 직사각형 평판의 유한요소 해석)

  • 유계형;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.668-671
    • /
    • 1997
  • In order to investigate the vibration characteristics of fluid-structure interaction problem, we modeled two identical rectangular plates coupled with bounded fluid. The fixed boundary condition along the plate edges and an ideal fluid were assumed. A commercial computer code, ANSYS was used to perform finite element analysis and FEM solutions were compared with the experimental results to modify the finite element model. As a result, comparison of FEM and experiment showed good agreement, and the transverse vibration modes, in-phase and out of-phase. were observed alternately in the tluid-coupled system. The effects of distance between two rectangular plates and width to length ratio on the fluid-coupled natural frequency were investigated. And it was found that the ormalized natural frequency of the fluid-coupled system monotonically increased with an increase in the number of modes.

  • PDF

A study on the thermal analysis of resistance sport welding Process using a FEM method (FEM 방법을 이용한 저항 점용접 공정의 열분석에 관한 연구)

  • Kim, Ill-Soo;Hou Zhigang;Wang Yuanxun;Li Chunzhi;Chen Chuanyao
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.172-174
    • /
    • 2003
  • In this paper, a 2D axisymmetric model of thermoelectric Finite Element Method (FEM) is developed to analyze the transient thermal behavior of Resistance Spot Welding (RSW) process using commercial software, called ANSYS. The determination of the contact resistance at the faying surface is moderately simplified to reduce the calculating time, while the temperature dependent material properties, phase change and convectional boundary conditions are taken account fur the improvement of the calculated accuracy. The thermal history of the whole process (including cooling) and temperature distributions for any position in the weldment is obtained through the analysis.

  • PDF