• 제목/요약/키워드: FEM Model

Search Result 2,117, Processing Time 0.028 seconds

Modeling and Analysis of Eardrum using FEM (고막의 유한요소 모델링 및 해석)

  • 강희용;김봉철;이동헌;임재중;전병훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.495-499
    • /
    • 2000
  • Auditory system is separated to Outer Ear, Middle Ear and Inner Ear, Middle Ear plays an important role as the sound transfer on amplitude. With analysing of Middle Ear, we can understand disease and compare unformal auditory systems. However, the investigation of mechanical modeling and analysis have been reported in a few paper. In this paper, a three dimensional Eardrum model of human ear was developed and analysed applying the general purpose Finite-Element program (Nastran). Vibration patterns of the eardrum obtained from FEM analysis are in agreements with the experimental results using stroboscope.

  • PDF

Finite Element Analysis of Synchronous Reluctance Motor Considering Iron Core Loss (철손을 고려한 동기형 릴럭턴스 전동기의 유한요소해석)

  • Lee, Jung-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.187-193
    • /
    • 1999
  • This study investigates the hysteresis phenomena of a Synchronous Reluctance Motor (SynRM) using coupled FEM and Preisach modeling. Preisach's model, which allows accurate prediction of hysteresis, is adopted in this procedure to provide a nonlinear solution. the computer simulation and experimental result for the i$\lambda$loci show the propriety of the proposed method.

  • PDF

The behavior of adjacent structures in tunnelling induced ground movements (터널 시공에 따른 지반 및 인접건물의 거동평가)

  • Kim, Hak-Moon;Jeon, Seong-Kon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.313-322
    • /
    • 2003
  • This research work presents 3-D behavior of adjacent structures due to tunnelling induced ground movements by means of field measuring data and nonlinear FEM tunnel analysis. The results of the analytical methods from Mohr-Coulomb model are compared with the site measurement data obtained during the twin tunnel construction. It was found that the location and stiffness of the structure influence greatly the shape and pattern of settlement trough. The settlement trough for Greenfield condition was different from the trough for existing adjacent structures. Therefore the load and stiffness of adjacent structures should be taken into account for the stability analysis of the structures.

  • PDF

Influence of the axial force on the behavior of endplate moment connections

  • Ghassemieh, Mehdi;Shamim, Iman;Gholampour, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.23-40
    • /
    • 2014
  • In this article, using finite element method of analysis (FEM), behavior of the endplate moment connection subjected to axial force and bending moment is investigated. In the FEM model, all the nonlinear characteristics such as material, geometry, as well as contact have been included. First, in order to verify the numerical model of the connection, an analysis of the endplate moment connection conducted without the application of the axial force. Results obtained from FEM indicating a close and good correlation with the experimental results. Then to investigate the influence of the axial forces, the connections subjected to axial forces as well as the bending moment are analyzed. To observe the overall effect of these actions, the momentaxial force interaction diagrams are drawn. It is observed that the presence of axial force even in a small value can change the behavior of the connection significantly. It is also shown that the axial forces can alter the failure mode of the connection; and therefore it could result in a different than the predicted moment capacity of the connection.

Quantitative nondestructive evaluation of thin plate structures using the complete frequency information from impact testing

  • Lee, Sang-Youl;Rus, Guillermo;Park, Tae-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.525-548
    • /
    • 2008
  • This article deals the theory for solving an inverse problem of plate structures using the frequency-domain information instead of classical time-domain delays or free vibration eigenmodes or eigenvalues. A reduced set of output parameters characterizing the defect is used as a regularization technique to drastically overcome noise problems that appear in imaging techniques. A deconvolution scheme from an undamaged specimen overrides uncertainties about the input signal and other coherent noises. This approach provides the advantage that it is not necessary to visually identify the portion of the signal that contains the information about the defect. The theoretical model for Quantitative nondestructive evaluation, the relationship between the real and ideal models, the finite element method (FEM) for the forward problem, and inverse procedure for detecting the defects are developed. The theoretical formulation is experimentally verified using dynamic responses of a steel plate under impact loading at several points. The signal synthesized by FEM, the residual, and its components are analyzed for different choices of time window. The noise effects are taken into account in the inversion strategy by designing a filter for the cost functional to be minimized. The technique is focused toward a exible and rapid inspection of large areas, by recovering the position of the defect by means of a single accelerometer, overriding experimental calibration, and using a reduced number of impact events.

Non-Prismatic Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames II: Verification of Model (강재 모멘트 골조의 비선형 지진 해석을 위한 부등단면 보 요소 II: 모델의 검증)

  • Hwang, Byoung-Kuk;Cheon, Chung-Ha;Kim, Kee-Dong;Ko, Man-Gi
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.37-46
    • /
    • 2007
  • This is the second of two companion papers that describe non-prismatic beam element for nonlinear seismic analysis of steel moment frames. Described in a companion paper is the formulation of a non-prismatic beam element to model the elastic and inelastic behavior of steel beams, which have reduced beam sections(RBS). This study describes the determination of yield surfaces, stiffness parameters, and hardening (or softening) rule parameters for RBS beam element. Analytical results of the RBS beam element show good correlation with test data and Finite Element Method(FEM) results.

Flexural Behavior of Composite Ring Stiffened by GFRP and Steel Pipe (GFRP와 강관으로 구성된 합성형 보강링의 휨거동)

  • Yoon, A Reum;Kim, Su Eun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • The flexural behavior of composite ring stiffened by GFRP and steel pipe is presented in this paper. The effective width is required to construct FEM beam element model to verify the composite flexural behavior of stiffened ring of cylindrical shell structure. The experimental results are compared with the theoretical and FEM results by commercial program ABAQUS to verify the effective width coefficient. The yield, crack and ultimate loads is calculated using theoretical strains that varies depending on yield state and compared with experiment result and FEM results by ABAQUS solid model.

Analysis of the direction of the canine and carnassial of small dog by 3D FEM (3차원 유한요소분석에 의한 소형견의 견치와 열육치의 교합력 방향 분석)

  • Park, yujin;Choi, sungmin
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.139-145
    • /
    • 2020
  • Purpose: This study is for the prosthesis of dog. Observed the occlusal relation between the small dog canine and carnassial teeth. The direction of the bite force was analyzed by 3D FEM(finite element method). Methods: The mandibular canine and carnassial of dog were tested. The skull of dog was contact point confirmed by dental CAD. The skull of dog was scaned using CT and a 3D model was created. The 3D model was analyzed ABAQUS. Closing movement has been 100N, 200N, 300N, 500N, 1000N, 1500N. The Direction of bite force was confirmed. Results: As occlusal force increased, the direction of bite force appeared to (-y), (-x,-y,-z), (-x,-y), (-x,-y,+z), (-x,-y,+ z), (+x,-y) in mandibular left canine. And the direction was seen at (+x, -y), (+x,-y,-z), (+x,-y), (-x,-y,+z), (-x,-y,+z), (+x,-y). When the occlusal load is 100 N, 200 N, 300 N, 500 N, the direction of the mandibular carnassial appears as (-x, -y, -z), and when the occlusal load is 1000 N, 1500 N, the direction appears as (-x,-y). Conclusion: The mandibular canine showed irregularities in the coordinates of the direction of the bite force, and the mandibular carnassial showed regularity in the coordinates of the direction of the bite force.

Hot Forging Design of Titanium Compressor Wheel for a Marine Turbocharger (선박용 과급기 타이타늄합금 압축기휠의 열간단조 공정설계)

  • Yeom, J.T.;Na, Y.S.;Lim, J.S.;Kim, J.H.;Hong, J.K.;Park, N.K.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.354-360
    • /
    • 2009
  • Hot-forging process and die design were made for a large-scale compressor wheel of Ti-6Al-4V alloy by using the results of 2-D FEM simulation. The design integrated the geometry-controlled approach and the processing contour map based on the dynamic materials model and the flow stability criteria. In order to obtain the processing contour map of Ti-6Al-4V alloy, compression tests were carried out in the temperature range of $915^{\circ}C$ to $1015^{\circ}C$ and the strain rate range of $10^{-3}s^{-1}$ to $10s^{-1}$. In the die design of the compressor wheel using the rigid-plastic FEM simulation, forging dimensional accuracy, the capacity of the forging machine and defect-free forging were considered as main design factors. The microstructure of hot forged wheel using the designed die showed a typical alpha-beta structure without forging-defects.