• Title/Summary/Keyword: FEM(finite element analysis)

Search Result 2,826, Processing Time 0.032 seconds

FEM Analysis of Rubber Cover for Automotive Parts (FEM에 의한 자동차부품용 고무커버에 관한 해석)

  • 김상우;김인관;강태호;김영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.778-781
    • /
    • 2002
  • Durability of rubber dust cover in the ball joint for automotive suspension parts were analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. So in the study, the deformation behavior of dust cover was analysed by using the commercial finite element program MARC. This program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber was modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen, The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber

  • PDF

Numerical Study on Analysis and Design of Tube Hydroforming Process by the FEM (유한요소법에 의한 관재 하이드로포밍 공정 해석 및 설계를 위한 수치적 연구)

  • Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.302-311
    • /
    • 2002
  • A generalized numerical approach based on the finite element method to analysis and design of hydroforming process is proposed in this paper. The special attention is focused on comparison of an implicit and an explicit finite element method widely used for hydroforming simulation. Furthermore, in order to meet the increasing real needs for prediction of forming limit, a ductile fracture criterion combined with finite element method is introduced and then applied to hydroforming process of an automobile lower m Consequently, the numerical analysis and design for hydroforming process presented here will facilitate the development and application of the tube hydrofoniung process to a new level.

Thermal Analysis of Automotive Disc Brake Using FFT-FEM (FFT-FEM을 이용한 자동차용 디스크 브레이크의 열 해석)

  • Choi, Ji-Hoon;Kim, Do-Hyung;Lee, In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1253-1260
    • /
    • 2001
  • Transient thermal analysis of a three-dimensional axisymmetric automotive disk brake is presented in this paper. Temperature fields are obtained using a hybrid FFT-FEM scheme that combines Fourier transform techniques and finite element method. The use of a fast Fourier transform algorithm can avoid singularity problems and lead to inexpensive computing time. The transformed problem is solved with finite element scheme for each frequency domain. Inverse transforms are then performed for time domain solution. Numerical examples are presented for validation tests. Comparisons with analytical results show very good agreement. Also, a 3-D simulation, based upon an automotive brake disk model is performed.

Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method

  • Yaylaci, Murat
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.405-414
    • /
    • 2022
  • In this study, the elastic plane problem of a layered composite containing an internal or edge crack perpendicular to its boundaries in its lower layer is examined using numerical analysis. The layered composite consists of two elastic layers having different elastic constants and heights. Two bonded layers rest on a homogeneous elastic half plane and are pressed by a rigid cylindrical stamp. In this context, the Finite Element Method (FEM) based software called ANSYS is used for numerical solutions. The problem is solved under the assumptions that the contacts are frictionless, and the effect of gravity force is neglected. A comparison is made with analytical results in the literature to verify the model created and the results obtained. It was found that the results obtained from analytical formulation were in perfect agreements with the FEM study. The numerical results for the stress-intensity factor (SIF) are obtained for various dimensionless quantities related to the geometric and material parameters. Consequently, the effects of these parameters on the stress-intensity factor are discussed. If the FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

A Study on 3D Smoothed Finite Element Method for the Analysis of Nonlinear Nearly-incompressible Materials (비선형 비압축성 물질의 해석을 위한 3차원 Smoothed FEM)

  • Lee, Changkye;Yee, Jurng-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.159-169
    • /
    • 2019
  • This work presents the three-dimensional extended strain smoothing approach in the framework of finite element method, so-called smoothed finite element method (S-FEM) for quasi-incompressible hyperelastic materials undergoing the large deformations. The proposed method is known that the incompressible limits, such as over-estimation of stiffness and distorted mesh sensitivity, can be overcome in two dimensions. Therefore, in this paper, the idea of Cell-based, Edge-based and Node-based strain smoothing approaches is extended to three-dimensions. The construction of subcells and smoothing domains for each methods are explained. The smoothed strain-displacement matrix and the stiffness matrix are obtained on each smoothing domain in the same manner with two-dimensional S-FEM. Various numerical tests are studied to demonstrate the validity and accuracy of 3D-S-FEM. The obtained results are compared with analytical solutions to express the efficacy of the methods.

Analytical solution of a contact problem and comparison with the results from FEM

  • Oner, Erdal;Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.607-622
    • /
    • 2015
  • This paper presents a comparative study of analytical method and finite element method (FEM) for analysis of a continuous contact problem. The problem consists of two elastic layers loaded by means of a rigid circular punch and resting on semi-infinite plane. It is assumed that all surfaces are frictionless and only compressive normal tractions can be transmitted through the contact areas. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. Then, finite element model of the problem is constituted using ANSYS software and the two dimensional analysis of the problem is carried out. The contact stresses under rigid circular punch, the contact areas, normal stresses along the axis of symmetry are obtained for both solutions. The results show that contact stresses and the normal stresses obtained from finite element method (FEM) provide boundary conditions of the problem as well as analytical results. Also, the contact areas obtained from finite element method are very close to results obtained from analytical method; disagree by 0.03-1.61%. Finally, it can be said that there is a good agreement between two methods.

The Application of a Direct Coupled BEM-FEM Model to Predict the TL Characteristics of Simple Expansion Silencers with Vibratory Walls (진동 벽면을 가진 단순 확장형 소음기 모델의 투과손실 특성 해석을 위한 DIRECT BEM-FEM 연성 모델의 적용)

  • Choi, C.H.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.24-30
    • /
    • 1998
  • A directly coupled Boundary Element and Finite Element Model was applied to the dynamic analysis of a coupled acoustic silencer with vibratory wall. In this cupled BEM-FEM muffler model, the BEM model was used to discretize the acoustic cavity and the FEM model was used to discretize the vibratory wall structure. Then the BEM model was coupled with the FEM model. The results of the coupled BEM-FEM model for the dynamic analysis of the simple expansion type reactive muffler configurations with flexible walls were verified by comparing the predicted results to analytical solutions. In order to investigate the effects of the muffler's structural flexibility on its transmission loss(TL) characteristics, the results of the coupled BEM-FEM model in conjunction with the four-pole parameter theory were utilized. The muffler's TL characteristics using the BEM-FEM coupled model with flexible walls as compared to other muffler configurations was studied. Finally the muffler's TL values with respect to different wall's thickness are predicted and compared.

  • PDF

A Comparative study of Finite Element Method and Boundary Element Method Analysis result of Cantilever Beam model by applying Orthotropic Material Properties (직교 이방성 재료 물성이 적용된 cantilever beam 형상의 FEM과 BEM에 의한 해석 결과에 대한 비교 연구)

  • Kim, Dong-Eun;Hwang, Young-Jin;Lee, Seok-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.730-735
    • /
    • 2007
  • This study is a comparison of the results of the orthropic material analysis at cantilever beam model using boundary element(BEM) method and finite element method(FEM). The program with the orthotropic material analysis was developed and applied to the examples in order to evaluate the accuracy of the programs. The examples shows that the results of the BEM is a good agreement with the ABAQUS results.

  • PDF

Elastic-plastic Analysis of a 3-Dimensional Inner Crack Using Finite Element Alternating Method (유한요소 교호법을 이용한 삼차원 내부 균열의 탄소성 해석)

  • Park, Jai-Hak;Park, Sang-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1009-1016
    • /
    • 2007
  • Finite element alternating method has been suggested and used effectively to obtain the fracture parameters in assessing the integrity of cracked structures. The method obtains the solution from alternating independently between the FEM solution for an uncracked body and the crack solution in an infinite body. In the paper, the finite element alternating method is extended in order to obtain the elastic-plastic stress fields of a three dimensional inner crack. The three dimensional crack solutions for an infinite body were obtained using symmetric Galerkin boundary element method. As an example of a three dimensional inner crack, a penny-shaped crack in a finite body was analyzed and the obtained elastc-plastic stress fields were compared with the solution obtained from the finite element analysis with fine mesh. It is noted that in the region ahead of the crack front the stress values from FEAM are close to the values from FEM. But large discrepancy between two values is observed near the crack surfaces.

Free Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method

  • Park, Myung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.805-815
    • /
    • 2003
  • In order to execute efficiently the free vibration analysis of 2-dimensional structures like plate structures, the author developed the finite element-transfer stiffness coefficient method. This method is based on the combination of the modeling techniques in the FEM and the transfer technique of the stiffness coefficient in the transfer stiffness coefficient method. Numerical results of the simply supported and the elastic supported rectangular plates showed that the present method can be successfully applied to the free vibration analysis of plate structures on a personal computer. We confirmed that, in the case of analyzing the free vibration of rectangular plate structures, the present method is superior to the FEM from the viewpoint of computation time and storage.