• Title/Summary/Keyword: FEM(finite element analysis)

Search Result 2,814, Processing Time 0.044 seconds

STSAT-3 Main Payload, MIRIS Flight Model Developments

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Ka, Nung-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • The Main payload of the STSAT-3 (Korea Science & Technology Satellite-3), MIRIS (Multipurpose Infra-Red Imaging System) has been developed for last 3 years by KASI, and its Flight Model (FM) is now being developed as the final stage. All optical lenses and the opto-mechanical components of the FM have been completely fabricated with slight modifications that have been made to some components based on the Engineering Qualification Model (EQM) performances. The components of the telescope have been assembled and the test results show its optical performances are acceptable for required specifications in visual wavelength (@633 nm) at room temperature. The ensuing focal plane integration and focus test will be made soon using the vacuum chamber. The MIRIS mechanical structure of the EQM has been modified to develop FM according to the performance and environment test results. The filter-wheel module in the cryostat was newly designed with Finite Element Analysis (FEM) in order to compensate for the vibration stress in the launching conditions. Surface finishing of all components were also modified to implement the thermal model for the passive cooling technique. The FM electronics design has been completed for final fabrication process. Some minor modifications of the electronics boards were made based on EQM test performances. The ground calibration tests of MIRIS FM will be made with the science grade Teledyne PICNIC IR-array.

  • PDF

Development of Designed Formulae for Predicting Ultimate Strength of the Perforated Stiffened Plate subjected to Axial Compressive Loading (압축하중을 받는 유공보강판 구조의 최종강도 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.435-445
    • /
    • 2007
  • Ship structures are thin-walled structures and lots of cutouts, for example, of inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed. In the present paper, we investigated several kinds of perforated stiffened model from actual ship structure and series of elasto-plastic large deflection analyses were performed to investigate into the influence of perforation on the buckling and ultimate strength of the perforated stiffened plate varying the cutout ratio, web height, thickness and type of cross-section by commercial FEA program(ANSYS). Closed-form formulas for predicting the ultimate strength of the perforated stiffened plate are empirically derived by curve fitting based on the Finite Element Analysis results. These formulas are used to evaluate the ultimate strength, which showed good correlation with FEM results. These results will be useful for evaluating the ultimate strength of the perforated stiffened plate in the preliminary design.

Evaluation on the External Restraint Stress in Mass Concrete (매스콘크리트의 외부구속응력에 관한 검토)

  • 강석화;정한중;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.111-122
    • /
    • 1996
  • The effects of external restraint on the thermal stresses i n mass concrete are investigated through a series of parametric study. Two major factors affecting the degree of external restraint such as the ratio of length to height of the placed structure (L/H) and the elastic modulus of base structure ($E_r$) are employed as the parameters in a condition which a placing height H is 1.0m. Various conditions of I,/H and E, are analysed by a FEM program and the relationship between these two parameters is examined. The shape of stress distribution due to the external restraint is shown as linearity on the height direction of the section, and is influenced by L/H, $E_r$, and strength development of placed concrete. The external restraint can be devided by two part. One is an axial restraint and the other is a flexural restraint. When the level of external restraint is low, the structure behavior is mainly governed by flexural restraint, otherwise it is dependent on axial restraint. Comparing the calculated stress by the method of the ACI 207 committee with a finite element analysis, the fbrmer overestimates the external restraint stress when the degree of external restraint is weak, and underestimates when it is strong.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

A Strategy of a Gap Block Design in the CFRP Double Roller to Minimize Defects during the Product Conveyance (제품 이송 시 결함 최소화를 위한 CFRP 이중 롤러의 Gap block 설계 전략)

  • Seung-Ji Yang;Young-june Park;Sung-Eun Kim;Jun-Geol Ahn;Hyun-Ik Yang
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2024
  • Due to the structural characteristic of a double roller, the double roller can have various deformation behaviors depending on a gap block design, even if dimensions and loading conditions for the double roller are the same. Based on this feature, we propose a strategy for designing the gap block of the carbon-fiber reinforced plastic (CFRP) double roller to minimize defects (e.g., sagging and wrinkling), which can be raised during the product conveying process, with the pursue of the lightweight design. In the suggested strategy, analysis cases are first selected by considering main design parameters and engineering tolerances of the gap block, and then deformation behaviors of these selected cases are extracted using the finite element method (FEM). Here, to obtain the optimal gap block parameters that satisfy the purpose of this study, deformation deviations in the contact area are calculated and compared using the extracted deformation behaviors. Note that the contact area in this work is located between the product and the roller. As a result, through the design method of the gap block proposed in this work, it is possible to construct the CFRP double roller that can significantly decrease the defects without changing the overall sizes of the roller. A detailed method is suggested herein, and the results are evaluated in a numerical way.

Evaluation of the stress distribution in the external hexagon implant system with different hexagon height by FEM-3D (임플란트 hexagon 높이에 따른 임플란트와 주위 조직의 응력분포 평가)

  • Park, Seong-Jae;Kim, Joo-Hyeun;Kim, So-Yeun;Yun, Mi-Jung;Ko, Sok-Min;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.36-43
    • /
    • 2012
  • Purpose: To analyze the stress distribution of the implant and its supporting structures through 3D finite elements analysis for implants with different hexagon heights and to make the assessment of the mechanical stability and the effect of the elements. Materials and methods: Infinite elements modeling with CAD data was designed. The modeling was done as follows; an external connection type ${\phi}4.0mm{\times}11.5mm$ Osstem$^{(R)}$ USII (Osstem Co., Pusan, Korea) implant system was used, the implant was planted in the mandibular first molar region with appropriate prosthetic restoration, the hexagon (implant fixture's external connection) height of 0.0, 0.7, 1.2, and 1.5 mm were applied. ABAQUS 6.4 (ABAQUS, Inc., Providence, USA) was used to calculate the stress value. The force distribution via color distribution on each experimental group's implant fixture and titanium screw was studied based on the equivalent stress (von Mises stress). The maximum stress level of each element (crown, implant screw, implant fixture, cortical bone and cancellous bone) was compared. Results: The hexagonal height of the implant with external connection had an influence on the stress distribution of the fixture, screw and upper prosthesis and the surrounding supporting bone. As the hexagon height increased, the stress was well distributed and there was a decrease in the maximum stress value. If the height of the hexagon reached over 1.2mm, there was no significant influence on the stress distribution. Conclusion: For implants with external connections, a hexagon is vital for stress distribution. As the height of the hexagon increased, the more effective stress distribution was observed.

A Biomechanical Study on a New Surgical Procedure for the Treatment of Intertrochanteric Fractures in relation to Osteoporosis of Varying Degrees (대퇴골 전자간 골절의 새로운 수술기법에 관한 생체역학적 분석)

  • 김봉주;이성재;권순용;탁계래;이권용
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.401-410
    • /
    • 2003
  • This study investigates the biomechanical efficacies of various cement augmentation techniques with or without pressurization for varying degrees of osteoporotic femur. For this study, a biomechanical analysis using a finite element method (FEM) was undertaken to evaluate surgical procedures, Simulated models include the non-cemented(i.e., hip screw only, Type I), the cement-augmented(Type II), and the cemented augmented with pressurization(Type III) models. To simulate the fracture plane and other interfacial regions, 3-D contact elements were used with appropriate friction coefficients. Material properties of the cancellous bone were varied to accommodate varying degrees of osteoporosis(Singh indices, II∼V). For each model. the following items were analyzed to investigate the effect surgical procedures in relation to osteoporosis of varying degrees : (a) von Mises stress distribution within the femoral head in terms of volumetric percentages. (b) Peak von Mises stress(PVMS) within the femoral head and the surgical constructs. (c) Maximum von Mises strain(MVMS) within the femoral head, (d) micromotions at the fracture plane and at the interfacial region between surgical construct and surrounding bone. Type III showed the lowest PVMS and MVMS at the cancellous bone near the bone-construct interface regardless of bone densities. an indication of its least likelihood of construct loosening due to failure of the host bone. Particularly, its efficacy was more prominent when the bone density level was low. Micromotions at the interfacial surgical construct was lowest in Type III. followed by Type I and Type II. They were about 15-20% of other types. which suggested that pressurization was most effective in limiting the interfacial motion. Our results demonstrated the cement augmentation with hip screw could be more effective when used with pressurization technique for the treatment of intertrochanteric fractures. For patients with low bone density. its effectiveness can be more pronounced in limiting construct loosening and promoting bone union.

Estimation of Allowable Bearing Capacity and Settlement of Deep Cement Mixing Method for Reinforcing the Greenhouse Foundation on Reclaimed Land (간척지 온실기초 보강을 위한 심층혼합처리공법의 허용지내력 및 침하량 산정)

  • Lee, Haksung;Kang, Bang Hun;Lee, Kwang-seung;Lee, Su Hwan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.287-294
    • /
    • 2021
  • In order to expand facility agriculture and reduce greenhouse construction costs in reclaimed land, a greenhouse foundation method that satisfies economic feasibility and structural safety at the same time is required. As an alternative, the allowable bearing capacity and settlement were reviewed when the DCM(Deep cement mixing) method was applied among the soft ground reinforcement methods. To examine the applicability of the greenhouse foundation, the allowable bearing capacity and settlement were calculated by applying the theory of Terzaghi, Meyerhof, Hansen, and Schmertmann. In case of the diameter of 800mm and the width and length of the foundation of 4m, the allowable bearing capacity was 179kN/m2 and the settlement was 7.25mm, which satisfies the required bearing capacity and settlement standards. The calculation results were verified through FEM(Finite element method) analysis using the Mohr-Coulomb material model. The allowable bearing capacity was 169kN/m2 and the settlement was 2.52mm. The bearing capacity showed an error of 5.6% compared to calculated value, and the settlement showed and error of 65.4%. Through theoretical calculations and FEM analysis, it was confirmed that the allowable bearing capacity and settlement satisfies the design criteria as a greenhouse foundation when the width and length of the foundation were 4m. Based on the verified design values, it is expected to be able to present the foundation design criteria for greenhouses through empirical tests such as bearing capacity tests and long-term settlement monitoring.

Theoretical Research for Unmanned Aircraft Electromagnetic Survey: Electromagnetic Field Calculation and Analysis by Arbitrary Shaped Transmitter-Loop (무인 항공 전자탐사 이론 연구: 임의 모양의 송신루프에 의한 전자기장 반응 계산 및 분석)

  • Bang, Minkyu;Oh, Seokmin;Seol, Soon Jee;Lee, Ki Ha;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.150-161
    • /
    • 2018
  • Recently, unmanned aircraft EM (electromagnetic) survey based on ICT (Information and Communication Technology) has been widely utilized because of the efficiency in regional survey. We performed the theoretical study on the unmanned airship EM system developed by KIGAM (Korea Institute of Geoscience and Mineral resources) as part of the practical application of unmanned aircraft EM survey. Since this system has different configurations of transmitting and receiving loops compared to the conventional aircraft EM systems, a new technique is required for the appropriate interpretation of measured responses. Therefore, we proposed a method to calculate the EM field for the arbitrary shaped transmitter and verified its validity through the comparison with analytic solution for circular loop. In addition, to simulate the magnetic responses by three-dimensionally (3D) distributed anomalies, we have adapted our algorithm to 3D frequency-domain EM modeling algorithm based on the edge-FEM (finite element method). Though the analysis on magnetic field responses from a subsurface anomaly, it was found that the response decreases as the depth of the anomaly increases or the flight altitude increases. Also, it was confirmed that the response became smaller as the resistivity of the anomaly increases. However, a nonlinear trend of the out-of-phase component is shown depending on the depth of the anomaly and the used frequency, that makes it difficult to apply simple analysis based on the mapping of the magnitude of the responses and can cause the non-uniqueness problem in calculating the apparent resistivity. Thus, it is a prerequisite to analyze the appropriate frequency band and flight altitude considering the purpose of the survey and the site conditions when conducting a survey using the unmanned aircraft EM system.

Finite element analysis of the effects of mouthguard produced by combination of layers of different materials on teeth and jaw (다양한 물성을 혼용하여 제작된 구강보호장치가 치아 및 악골에 미치는 영향)

  • So, Woong-Seob;Lee, Hyun-Jong;Choi, Woo-Jin;Hong, Sung-Jin;Ryu, Kyung-Hee;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.324-332
    • /
    • 2011
  • Purpose: The purpose of this study was to compare the stress distribution of teeth and jaw on load by differentiating property of materials according to each layer of widely used mouthguard. Materials and methods: A Korean adult having normal cranium and mandible was selected to examine. A customized mouthguard was constructed by use of DRUFOMAT plate and DRUFOMAT-TE/-SQ of Dreve Co. according to Signature Mouthguard system. The cranium was scanned by means of computed tomography with 1mm interval. It was modeled with CANTIBio BIONIX/Body Builder program and simulated and interpreted using Alter HyperMesh program. The mouthguard was classified as follows according to the layers. (1) soft guard (Bioplast)(SG) (2) hard guard (Duran)(HG) (3) medium guard (Drufomat)(MG) (4) soft layer + hard layer (SG + HG) (5) hard layer + soft layer (HG + SG) (6) soft layer + hard layer + soft layer (SG + HG + SG) (7) hard layer + soft layer + hard layer (HG + SG + HG) The impact locations on mandible were gnathion, the center of inferior border, and the anterior edge of gonial angle. And the impact directions were oblique ($45^{\circ}$). The impact load was 800 N for 0.1 sec. The stress distribution was measured at maxillary teeth, TMJ and maxilla. The statistics were conducted using Repeated ANOVA and in case of difference, Duncan test was used as post analysis. Results: In teeth and maxilla, the mouthguard contacting soft layer of mandibular teeth presented lowest stress measure and, in contrast, in condyle, the mouthguard contacting hard layer of mandibular teeth presented lowest stress measure. Conclusion: For all impact directions, soft layer + hard layer + soft layer, the mouthguard with three layers which the hard layer is sandwiched between two soft layers, showed relatively even distribution of stress in impact.