• Title/Summary/Keyword: FEM(finite element analysis)

Search Result 2,826, Processing Time 0.035 seconds

Non-stochastic interval factor method-based FEA for structural stress responses with uncertainty

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.703-708
    • /
    • 2017
  • The goal of this study is to evaluate behavior uncertainties of structures by using interval finite element analysis based on interval factor method as a specific non-stochastic tool. The interval finite element method, i.e., interval FEM, is a finite element method that uses interval parameters in situations where it is not possible to get reliable probabilistic characteristics of the structure. The present method solves the uncertainty problems of a 2D solid structure, in which structural characteristics are assumed to be represented as interval parameters. An interval analysis method using interval factors is applied to obtain the solution. Numerical applications verify the intuitive effectiveness of the present method to investigate structural uncertainties such as displacement and stress without the application of probability theory.

Finite element analysis of mechanical properties of the balloon-expandable stent (풍선확장식 스텐트의 기계적 특성에 대한 유한요소해석)

  • Cho, Hae-Yong;Oh, Byung-Ki;Chae, Dong-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.485-490
    • /
    • 2003
  • In this paper, a nonlinear finite-element method was employed to analyze mechanical behaviors of the balloon-expandable stent. Beyond safety considerations, this type of analysis provides mechanical properties that are often difficult to obtain by experiments. Mechanical properties of the stent expansion pressure, radial recoil, longitudinal recoil and foreshortening were studied using commercial FEM code, ANSYS. As a result, the pressure necessary to expand the stent up to a diameter of 3mm was 7.6atm, longitudinal recoil, radial recoil and foreshortening were -0.388%, 2.87% and 4.07% respectively. In conclusion, a finite element model used in this study could help in designing new stents or analyzing actual stents.

  • PDF

A LNG Pressure Vessel Design (LNG 압력용기의 설계)

  • 김정위
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.28-37
    • /
    • 2000
  • In this paper the LNG vessel of the Moss type which is capable of lifting 15,261 tons is investigated in the view point of the pressure vessel preliminary design using the finite element method. The Pressure vessel design is based on the equivalent stress levels due to the internal pressure. The finite element model of the spherical pressure vessel is configured using 4 noded quadrilateral shell element. The finite element analysis program NASTRAN and ANSYS 5.5are implemented. The design is compared with the three kinds of the boundary condition : first, where the equator of the pressure vessel is fixed, and where the top and is fixed, and, the bottom end is fixed, respectively. A comparison is presented between the results obtained by the finite element model and by the prototype production model. Additionally just below position(case 1 & case 2) of equator ring was carried out by using ANSYS 5.5. The results show that the vessel design based on the stress is acceptable at the preliminary design.

  • PDF

복합재료 적층판의 유한요소법 기반 역학적 거동 해석

  • Im, Yeong-Nam;Cheon, Jae-Hui;Lee, Ho-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.285-291
    • /
    • 2015
  • In this paper, a composite material analysis program based on the finite element method(FEM) is used. The purpose of this study was to verify whether the composite material analysis program which developed as part of a project of development of softwares and educational contents for structural vibration and composite material analysis that can calculate how similar the macroscopic mechanical behavior of the composite materials actually. Because composite materials are generally anisotropic, analysis of composite laminate is used for the constitutive equations of orthotropic material. For convenience, the unit is ommited in all calculations. To verify the accuracy of the finite element method based program, the deflection and stress distribution of the simply supported composite material laminated plate subjected to a uniform load distribution is compared with exact solution. Size and properties of the composite material laminate used for analysis are fixed variables, and by changing the number of elements and the total thickness of the laminate is compared with the exact solution to the resulting value, respectively.

  • PDF

Torsional Vibration Analysis of Shaft System Using Transfer Dynamic Stiffness Coefficient (동강성계수의 전달을 이용한 축계의 비틀림진동 해석)

  • Moon, D.H.;Choi, M.S.;Sim, J.M.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.91-97
    • /
    • 1997
  • Recently, it is increased by degrees to construct complex and large structures. In general, in order to solve the dynamic problem of these structures they have used finite element method(FEM). In this method, however, it is necessary to prove whether its results are correct or not. Therefore it requires much effort, time and many expenses for dynamic analysis of complex and large structures. Authors have developed the transfer dynamic stiffness coefficient method(TDSCM) which is the new vibration analysis method for complex and large structures on personal computer, and confirmed that the results of this method are good for these structures on personal computer. In this paper, TDSCM is applied to the torsional vibration analysis for the shaft system which consist of concentrated disks and shafts of continuous body. First, we formulate algorithms for torsional free and forced vibration analysis, and compare the results of TDSCM and FEM.

  • PDF

The Study on a Dynamic Analysis of Permanent Magnet Generator considering Overhang Effect (오버행을 고려한 영구자석 동기 발전기의 동특성 해석 연구)

  • Kim, Ki-Chan;Lee, Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.58-62
    • /
    • 2006
  • The purpose of this paper is characteristic analysis of permanent magnet generator (PMG) for automatic voltage regulator (AVR)power of brush less synchronous generator. However, this PMG has a spoke type permanent magnet rotor with large overhang for high power density, characteristic analysis considering concentration effect of air-gap flux density due to the overhang should be performed. 30 transient finite element method (FEM)analysis is good solution for overhang parameter, but this method needs too much calculation time. In this paper, we examined the overhang effects based on overhang length and material of rotor core by using 20 and 30 static FEM analysis, and proposed 20 dynamic FEA model considering overhang parameter which gives good and rapid results. The proposed method is verified by the test results of no load, load and short circuit test.

  • PDF

A study on the excavation rate of directional drilling using finite element method (유한요소법을 이용한 방향성 시추의 굴진율 연구)

  • Jung, Tae Joon;Shin, Younggy
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.42-46
    • /
    • 2021
  • The equation of motion of the drill string along the excavation trajectory was analyzed using the Lagrangian approach together with the finite element method (FEM). A drill string of circular cross section is constructed by combining a plurality of circular axes each having 12 degrees of freedom (DOF). FEM analysis can observe the vibration and dynamic changes of the entire drill string, and it is easy to apply comprehensive boundary conditions to reproduce the simulation of a realistic drill string. In this study, the constructed FEM motel was simulated. In order to apply the FEM program to the actual drill trajectory, the dynamic analysis of the curved beam was verified by comparison with the actual values. The dynamic change over time was observed.

Analysis on the Squeal Noise of Wheel Brake System for Tilting Train (틸팅차량용 휠 제동장치의 스퀼 소음 해석)

  • Cha, Jung-Kwon;Park, Yeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.98-105
    • /
    • 2010
  • Squeal, a kind of self-excited vibration, is generated by the friction between the disc and the friction materials. It occurs at the ending stage of the braking process, and radiates and audible frequency range of 1 kHz to 10 kHz. Squeal is generated from unstability because of the coupling between the translation and rotation of the system. This instability is caused by the follower force and follower force is normal component of the friction force. In this paper modal analysis of wheel brake system was performed in order to predict the squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. A finite element model of that brake system was made. Some parts of a real brake was selected and modeled. Modal analysis method performs analyses of each brake system component. Experimental modal analysis was performed for each brake components and experimental results were compared with analytical results from FEM. To predict the dynamic unstability of a whole system, the complex eigenvalue analysis for assembly modeling of components confirmed by modal analysis is performed. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. The complex eigenvalue analysis results compared with real train test.

Plane-Strain Analysis of Auto-Body Panel Using the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 자동차 판넬 성형공정의 평면 변형해석)

  • 양동열;정완진;송인섭;전기찬;유동진;이정우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.169-178
    • /
    • 1991
  • A plane-strain finite element analysis of sheet metal forming is carried out by using the rigid-plastic FEM based on the membrane theory. The sheet material is assumed to possess normal anisotropy and to obey Hill's new yield criterion and its associated flow rule. A formulation of initial guess generation for the displacement field is derived by using the nonlinear elastic FEM. A method of contact treatment is proposed in which the skew boundary condition for arbitrarily shaped tools is successively used during iteration. In order to verify the validity of the developed method, plane-strain drawing with tools in analytic expression and with arbitrarily shaped tools is analyzed and compared with the published results. The comparison shows that the present method can be effectively used in the analysis of plane-strain sheet metal forming and thus provides the basis of approximate sectional analysis of panel-like sheet forming.

Thermal Deformation Analysis of Shadow Mask in a Flat TV and Prediction of Electron Beam Landing Shift by FEM (유한요소법에 의한 평면 TV 새도우마스크의 열변형해석 및 전자빔 오착 예측)

  • Kim, Jeong;Park, Soo-Kil;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2297-2304
    • /
    • 2002
  • Two-dimensional and three-dimensional finite element methods have been used to analyze the deformation behavior of a shadow mask due to thermal and tension load. The shadow mask inside the Braun tube of a TV set has numerous slits through which the electron beams are guided to land on the designed phosphor of red, green or blue. Its thermal deformation therefore causes landing shift of the electron beam and results in decolorization of a screen. For the realistic finite element analysis, the effective thermal conductivity and the effective elastic modulus arc calculated, and then the shadow mask is modeled as shell without slits. Next a transient thermal analysis of the shadow mask is performed, wherein thermal radiation is a major heat transfer mechanism. Analysis of the resulting thermal deformation is followed, from which the landing shift of the electron beam is obtained. The present finite element scheme may be efficiently used to reduce thermal deformation of a shadow mask and in developing prototypes of a large screen flat TV.