• 제목/요약/키워드: FEM(Finite elements method)

검색결과 330건 처리시간 0.022초

변화하는 자기장 하에 있는 고온초전도체에 대한 유한요소법을 이용한 2차원 수치해석 연구 (2-Dimensional Numerical Studies on Thin HTS Film under Time Varying Magnetic Field Using Finite Element Method)

  • 곽기성;이효연;이준규;염도준;유재은;한영희;박병준
    • Progress in Superconductivity
    • /
    • 제13권3호
    • /
    • pp.151-157
    • /
    • 2012
  • In this paper, we used E-J constitutive law and H-formulation to calculate magnetic field profile, current density, and magnetization of high temperature superconductor (HTS) placed in time varying applied magnetic field. Finite element method (FEM)-based software, Comsol Multiphysics 3.5a, was employed to simulate 2-dimensional model of a superconducting thin strip. The numerical results based on Kim's critical state model were compared with the case of strip in a perpendicular field in the Brandt's paper as well as experimental data observed by Scanning Hall Probe and SQUID.

유한요소법을 이용한 자기부상용 선형유도기의 운전 특성 분석법 (Analysis on Driving Performance of Linear Induction Motor for Maglev System by Finite Element Method)

  • 김기찬
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4469-4474
    • /
    • 2014
  • 본 논문에서는 유한요소법을 사용하여 자기부상열차용 선형 유도 전동기의 효율적인 운전곡선 도출 방법을 제안한다. 긴 시간의 동특성 해석을 위해 선형유도기 모델을 선형에서 회전형 타입으로 변환하고, 제어시 필요한 슬립 파라미터를 전자장 해석을 통하여 효과적으로 도출하였다. 견인용 선형유도전동기는 인버터에 의해 저속의 정토크 영역에서는 전압/주파수 (V/f) 일정제어를 수행하고, 고속에서의 정출력 영역에서는 전압을 고정시키고 주파수를 증가시키면서 제어한다. 따라서 논문에서는 정토크 및 정출력 영역의 운전 특성을 도출하기 위해 각 구간에서 일정한 스텝으로 슬립특성 곡선을 도출하고, 차량의 운전 상태에 따른 슬립 및 주파수를 특성곡선의 보간법에 의해 결정한다. 본 방법을 이용하면 차량의 임의의 부하상태에 따라 최적의 운전 지령을 제시할 수 있다.

Strength assessment method of ice-class propeller under the design ice load condition

  • Ye, L.Y.;Guo, C.Y.;Wang, C.;Wang, C.H.;Chang, X.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.542-552
    • /
    • 2019
  • The strength assessment is the most important part at the design of ice-class propeller. Based on ice rules for ice-class propeller in IACS URI3 and FEM, the strength assessment method of ice-class propeller is established in this paper. To avoid the multifarious meshing process of propeller blade, an automatic meshing method has been developed by dividing the propeller geometry into a number of 8-node hexahedron elements along radial, chordwise and thickness directions, then the loaded areas in five cases can easily be calculated and identified. The static FEM is applied to calculate the stress and deformation of propeller blade. The fair agreements between the results of the present method and ANSYS/Workbench demonstrate its robust and the feasibility, and also the method is able to produce smooth gradient field. The blade stress and deformation distributions for five load cases are studied, and then the strength of the whole blade is checked.

Lateral stability analysis of multistory buildings using the differential transform method

  • Aydin, Suleyman;Bozdogan, Kanat Burak
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.861-876
    • /
    • 2016
  • The determination of the critical buckling load of multistory structures is important since this load is used in second order analysis. It is more realistic to determine the critical buckling load of multistory structures using the whole system instead of independent elements. In this study, a method is proposed for designating the system critical buckling load of torsion-free structures of which the load-bearing system consists of frames and shear walls. In the method presented, the multistory structure is modeled in accordance with the continuous system calculation model and the differential equation governing the stability case is solved using the differential transform method (DTM). At the end of the study, an example problem is solved to show the conformity of the presented method with the finite elements method (FEM).

Mechanical behavior of steel tube encased high-strength concrete composite walls under constant axial load and cyclically increasing lateral load: Experimental investigation and modeling

  • Liang Bai;Huilin Wei;Bin Wang;Fangfang Liao;Tianhua Zhou;Xingwen Liang
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.37-50
    • /
    • 2023
  • This paper presented an investigation into steel tubes encased high-strength concrete (STHC) composite walls, wherein steel tubes were embedded at the boundary elements of high-strength concrete walls. A series of cyclic loading tests was conducted to evaluate the failure pattern, hysteresis characteristics, load-bearing capacity, deformability, and strain distribution of STHC composite walls. The test results demonstrated that the bearing capacity and ductility of the STHC composite walls improved with the embedding of steel tubes at the boundary elements. An analytical method was then established to predict the flexural bearing capacity of the STHC composite walls, and the calculated results agreed well with the experimental values, with errors of less than 10%. Finally, a finite element modeling (FEM) was developed via the OpenSees program to analyze the mechanical performance of the STHC composite wall. The FEM was validated through test results; additionally, the influences of the axial load ratio, steel tube strength, and shear-span ratio on the mechanical properties of STHC composite walls were comprehensively investigated.

유한요소를 이용한 유연성 간극기구의 동적 해석 (Dynamic Analysis of Flexible Mechanisms with Clearances Using Finite Elements)

  • 길계환;윤용산
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.288-297
    • /
    • 1990
  • The method of analyzing flexible mechanisms with clearances was studied considering flexibility of beams in the mechanism using finite elements. Both ends of a beam were modeled as free following Dubowsky's impact pair model. Instead some force constraints were imposed at imposed at the connections between adjoining links. Coulomb model has been developed using dry frictions in place of tangential damping forces in the impact pair model and the contact compliance and damping coefficient approximated in a form of root function were used. As examples, impacts of a rigid ball in a cylinder, impact beam model and four-bar mechanisms made up of three flexible links with clearance connections were simulated numerically. The results from examples showed similar but a little bit smaller magnitude of impact forces compared with published studies.

자동설계프로그램과 유한요소법을 활용한 래칫 휠 설계에 관한 연구 (A Study on the Design of Ratchet Wheel Using Automatic Design Program and Finite Element Analysis)

  • 김민주;이승수;전언찬
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1882-1887
    • /
    • 2002
  • This study is to develop a automatic design program of mechanical elements as the integrated system which can create automatically 3-dimensional solid and surface model using visualLISP. By the applying developed system to CAE system, the following objects are realized. At first, constructing the library of automatic design program for unexperienced design engineer, the 3-dimensional modeling of mechanical elements can be obtained easily. at second, the 3-dimensional model for ratchet wheel design is created by finete element model of CAE system and the optimal design condition of key way.

On the natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of concentrated elements

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • 제29권5호
    • /
    • pp.531-550
    • /
    • 2008
  • This paper adopts the numerical assembly method (NAM) to determine the exact solutions of natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and springmass systems. First, the coefficient matrix for an intermediate station with various concentrated elements, cross-section change and/or pinned support and the ones for the left-end and right-end supports of a beam are derived. Next, the overall coefficient matrix for the entire beam is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact solutions for the natural frequencies of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and the associated mode shapes are obtained by substituting the corresponding values of integration constants into the associated eigenfunctions.

FEM에 의한 볼트 결합 판재의 동특성 해석 (The Dynamic Characteristics of Bolt Jointed Plates Using the Finite Element Method)

  • 홍상준;김윤영;이동진;이석원;유정훈
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.990-998
    • /
    • 2004
  • There have been lots of efforts to analyze the dynamic characteristics of mechanical systems. However, it is difficult the know the dynamic characteristics of mechanical systems composed of many parts with joints. Specially, in case of a bolted Joint structure, no effective modeling method has been defined to acquire dynamic characteristics of the structure using the finite element (FE) analysis. In this research, a linear dynamic model is developed for bolted feints and large interfaces using con frusta method and linear spring elements, respectively. The developed modeling method for bolted joints is verified based on the experimental result.

Crack propagation and deviation in bi-materials under thermo-mechanical loading

  • Chama, Mourad;Boutabout, Benali;Lousdad, Abdelkader;Bensmain, Wafa;Bouiadjra, Bel Abbes Bachir
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.441-457
    • /
    • 2014
  • This paper presents a finite element based numerical model to solve two dimensional bi-material problems. A bi-material beam consisting of two phase materials ceramic and metal is modelled by finite element method. The beam is subjected simultaneously to mechanical and thermal loadings. The main objective of this study is the analysis of crack deviation located in the brittle material near the interface. The effect of temperature gradient, the residual stresses and applied loads on crack initiation, propagation and deviation are examined and highlighted.