• Title/Summary/Keyword: FEM(Finite Element Analysis)

Search Result 2,804, Processing Time 0.034 seconds

AC transport current loss analysis for anti-parallel current flow in face-to-face stacks of superconducting tapes

  • Yoo, Jaeun;Han, Young-Hee;Kim, Hey-Rim;Park, Byung-Jun;Yang, Seong-Eun;Kim, Heesun;Yu, Seung-Duck;Park, Kijun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.42-46
    • /
    • 2014
  • In this study we investigated ac transport current losses in the face to face stack for the anti-parallel current flow, and compared the electromagnetic properties with those of the single SC tape as well as those of the same stack for the parallel current path. The gap between the SC tapes in the stack varied in order to verify the electromagnetic influence of the neighbors when current flows in opposite direction, and the model was implemented in the finite element method program by the commercial software, COMSOL Multiphysics 4.2a. Conclusively speaking, the loss was remarkably decreased for the anti-parallel current case, which is attributed the magnetic flux compensation between the SC layers due to the opposite direction of the current flows. As the gap between SC tapes was increased, the loss mitigation became less effective. Besides, the current density distribution is very flat cross the sample width for the narrower gap case, which is believed to be benefit for the power electric system. These results are all in good agreement with those predicted theoretically for an infinite bifilar stack.

Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method (SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도)

  • Lee, Man Suk;Kim, Taek Young;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

Earthquake Response Analyses of Underground Structures Using Displacement Responses of Soil (응답변위법을 이용한 지중구조물의 지진해석)

  • Kim, Doo-Kie;Seo, Hyeong-Yeol;Park, Jin-Woo;Choe, In-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.133-142
    • /
    • 2006
  • This study performed earthquake response analyses of underground structures using displacement responses of soil. In this study, spring coefficients of surrounding soil proposed by specifications and researchers were adopted and then their corresponding analysis results were compared. The free field analyses using ProShake were carried out in order to predict ground responses of the field without underground structures. Several earthquakes such as El Centro, Ofunato, and Hachinohe earthquakes were considered to calculate maximum displacements. Numerical examples were analyzed, and then the results were compared and commented depending on spring coefficients of soil for the analyses using displacement responses of soil. The soil coefficients ranged from 0.05 to 14.39 times of those calculated by Korean Bridge Design Specification (2005). In conclusion, the coefficients of soil proposed by standard specifications seemed to be overestimated compared with those by the finite element method(FEM).

Redistributions of Welding Residual Stress for CTOD Specimen by Local Compression (Local compression에 의한 CTOD 시편내의 용접잔류응력 재분포)

  • Joo, Sung-Min;Yoon, Byung-Hyun;Chang, Woong-Seong;Bang, Han-Sur;Bang, Hee-Seon;Ro, Chan-Seung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.31-35
    • /
    • 2009
  • When conducting CTOD test, especially in thick welded steel plate, fatigue pre-cracking occasionally failed to satisfy the requirements of standards thus making the test result invalid. Internally accumulated residual stress of test piece has been thought as one of the main reasons. The propagation of fatigue crack, started from the tip of machined notch, which might have propagated irregularly due to residual stress field. To overcome this kind of difficulty three methods to modify the residual stress are suggested in standard i.e. local compression, reverse bending and stepwise high-R ratio method. In this paper not only multi pass welding but also local pre-compressing process of thick steel plate has been simulated using finite element method for clarifying variation of internal welding residual stress. The simulated results show that welding residual stress is compressive in the middle section of the model and it is predominantly increased after machining the specimen. Comparing as-welded state all component of the welding residual stress changing to compressive in the tip of machine notch whereas residual stress of the outer area remain as tensile condition relatively. Analysis results also show that this irregular residual stress distribution is improved to be more uniformly by applying local compression.

Optimization of Thermal Deformation in Probe Card (프로브 카드의 열변형 최적화)

  • Chang, Yong-Hoon;Yin, Jeong-Je;Suh, Yong-S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4121-4128
    • /
    • 2010
  • A probe card is used in testing semiconductor wafers. It must maintain a precise location tolerance for a fine pitch due to highly densified chips. However, high heat transferred from its lower chuck causes thermal deformations of the probe card. Vertical deformation due to the heat will bring contact problems to the pins in the probe card, while horizontal deformation will cause positional inaccuracies. Therefore, probe cards must be designed with proper materials and structures so that the thermal deformations are within allowable tolerances. In this paper, heat transfer analyses under realistic loading conditions are simulated using ANSYS$^{TM}$ finite element analysis program. Thermal deformations are calculated based on steady-state temperature gradients, and an optimal structure of the probe card is proposed by adjusting a set of relevant design parameters so that the deformations are minimized.

A Study on Minimum Weight Design of Horizontal Corrugated Bulkheads for Chemical Tankers (화학제품 운반선 수평 파형격벽의 최소중량설계에 관한 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.51-56
    • /
    • 2016
  • Corrugated bulkheads have many advantages compared to stiffened bulkheads, and they have thus been used for the cargo tank bulkheads of commercial vessels, such as bulk carriers, product oil carriers, and chemical tankers. Various studies have been carried out to find the optimum corrugation shape for bulk carriers, but optimum design studies for chemical tankers with bulkheads made of high-priced materials are scarce. The purpose of this study is to develop a minimum weight design method for horizontal corrugated bulkheads for a chemical tanker. An evolution strategy (ES) that searches for a reliable global optimum point was applied as an optimization technique, and the structural safety of the optimum design was verified through structural analysis using the finite element method (FEM). The results were compared with those of an existing ship, which showed a weight reduction of about 14% with equivalent structural strength.

Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology

  • Li, Yuanming;Yuan, Pan;Ren, Quan-yao;Su, Guanghui;Yu, Hongxing;Wang, Haoyu;Zheng, Meiyin;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1540-1555
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect its stress conditions, mechanical behavior and thermal-hydraulic performance. A reliable numerical method is of great importance to reveal the complex evolution of mechanical deformation, flow redistribution and temperature field for the plate-type fuel assembly under non-uniform irradiation. This paper is the first part of a two-part study developing the numerical methodology for the thermal-fluid-structure coupling behaviors of plate-type fuel assembly under irradiation. In this paper, the thermal-fluid-structure coupling methodology has been developed for plate-type fuel assembly under non-uniform irradiation condition by exchanging thermal-hydraulic and mechanical deformation parameters between Finite Element Model (FEM) software and Computational Fluid Dynamic (CFD) software with Mesh-based parallel Code Coupling Interface (MpCCI), which has been validated with experimental results. Based on the established methodology, the effects of non-uniform irradiation and fluid were discussed, which demonstrated that the maximum mechanical deformation with irradiation was dozens of times larger than that without irradiation and the hydraulic load on fuel plates due to differential pressure played a dominant role in the mechanical deformation.

Effect of Groundwater Flow on Ice-wall Integrity (얼음벽 형성에 대한 지하수 흐름의 영향)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.43-55
    • /
    • 2018
  • AGF (Artificial Ground Freezing) method is a temporary ground improvement method which can apply to all types of soil with the purpose of high stiffness and low hydraulic conductivity. However, the groundwater flow and the heterogeneity of the ground increase the uncertainty of the ice-column formation which hinders the reliability of this method. The effects of groundwater flow and layered heterogeneity on ice-wall integrity by AGF method were analyzed using finite element analysis program for a coupled thermo-hydro phenomena in the freezing ground. Groundwater flow changes circular ice-column into elliptical shapes and increases the time required for the formation of ice walls. The previous theoretical formula overestimated the completion time of the ice wall and the critical groundwater velocity by neglecting the thermal interaction between adjacent ice-columns. Numerical results presented the corrected formula and verified the proposed equation for the dimensionless ice-wall completion time. In the layered heterogeneous ground, the thickness of the layer with higher hydraulic conductivity and its relative magnitude were found to be important factors in the ice-wall completion time and critical velocity.

Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.483-492
    • /
    • 2019
  • In the current study, the influence of the initial lateral (sweep) shape and the cross-sectional twist imperfection on the lateral torsional buckling (LTB) response of doubly-symmetric steel I-beams was investigated. The material imperfection (residual stress) was not considered. For this objective, standard European IPN 300 beam with different unbraced span was numerically analyzed for three imperfection cases: (i) no sweep and no twist (perfect); (ii) three different shapes of global sweep (half-sine, full-sine and full-parabola between the end supports); and (iii) the combination of three different sweeps with initial sinusoidal twist along the beam. The first comparison was done between the results of numerical analyses (FEM) and both a theoretical solution and the code lateral torsional buckling formulations (EC3 and AISC-LRFD). These results with no imperfection effects were then separately compared with three different shapes of global sweep and the presence of initial twist in these sweep shapes. Besides, the effects of the shapes of initial global sweep and the inclusion of sinusoidal twist on the critical buckling load of the beams were investigated to unveil which parameter was considerably effective on LTB response. The most compatible outcomes for the perfect beams was obtained from the AISC-LRFD formulation; however, the EC-3 formulation estimated the $P_{cr}$ load conservatively. The high difference from the EC-3 formulation was predicted to directly originate from the initial imperfection reduction factor and high safety factor in its formulation. Due to no consideration of geometric imperfection in the AISC-LFRD code solution and the theoretical formulation, the need to develop a practical imperfection reduction factor for AISC-LRFD and theoretical formulation was underlined. Initial imperfections were obtained to be more influential on the buckling load, as the unbraced length of a beam approached to the elastic limit unbraced length ($L_r$). Mode-compatible initial imperfection shapes should be taken into account in the design and analysis stages of the I-beam to properly estimate the geometric imperfection influence on the $P_{cr}$ load. Sweep and sweep-twist imperfections led to 10% and 15% decrease in the $P_{cr}$ load, respectively, thus; well-estimated sweep and twist imperfections should considered in the LTB of doubly-symmetric steel I-beams.

Calculating transmission loss of cylindrical silencers lined with multi-layered poroelastic sound absorbing materials using mode matching method (모드 매칭법을 이용한 다층 다공성 탄성 흠음재가 채워진 원통형 소음기의 음향투과손실 계산)

  • Lee, Jongmoo;Yang, Haesang;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.375-388
    • /
    • 2022
  • This paper deals with the process of obtaining sound transmission loss of a cylindrical silencer lined with multi-layered poroelastic sound absorbing materials. The Biot model and the Johnson-Champoux-Allard-Lafarge (JCAL) model were used to deal with waves propagating in multi-layered poroelastic materials. The boundary conditions required for analysis of the silencer were obtained and the numerical process of finding modes was explained. A numerical experiment was conducted on the 2-layered silencer using the modes and the transmission loss converged with the first 12 modes. Finally, the mode matching method proposed in this research was validated by being compared with the results calculated from Finite Element Method (FEM) about different kinds of sound absorbing materials.