• Title/Summary/Keyword: FED tubeless packaging

Search Result 3, Processing Time 0.016 seconds

Development of Tubeless-Packaged Field Emission Display (Tubeless Packaging된 Field Emission Display의 개발)

  • Ju, Byeong-Gwon;Lee, Deok-Jung;Lee, Yun-Hui;O, Myeong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.275-280
    • /
    • 1999
  • The glass-to-glass electrostatic bonding process in vacuum environment was developed and the tubeless-packaged FED was fabricated based on the bonding process. The fabricated tubeless-packaged FED showed stable field emission characteristics and potential applicability to the FED tubeless packaging and vacuum in-line sealing.

  • PDF

Sodalime-sodalime Electrostatic Bonding using Amorphous Silicon Interlayer and Its Application to FEA Packging (비정질 실리콘 박막을 이용한 Sodalime-Sodalime 정전 열 접합 및 FEA Packaging 응용)

  • Ju, Byeong-Kwon;Lee, Duck-Jung;Choi, Woo-Beom;Kim, Young-Cho;Lee, Nam-Yang;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.656-661
    • /
    • 1999
  • As a fundamental study for FED tubeless packaging, sodalime-sodalime electrostatic bonding was performed by using on the developed bonding mechanism. Thebonding properties of the bonded sodalime-sodalime structure were investigated through SEM and SIMS analyses. Mo-tip FEA was vacuum-packaged by the developed bonding process and the packaged device generated the field emission current.

  • PDF

Study on Vacuum Packaging of Field Emission Display (Field Emission Display의 고진공 실장에 관한 연구)

  • Lee, Duck-Jung;Ju, Byeong-Kwon;Jang, Jin;Oh, Myong-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.103-106
    • /
    • 1999
  • In this paper, we suggest the FED packaging technology that have 4mm thickness, using sodalime glass-to-sodalime glass electrostatic bonding. It based on conventional silicon-glass bonding. The silicon film was deposited an around the exhausting hole on FED backside panel. And then, the silicon film of panel was successfully bonded with capping(bare) glass in vacuum environment and the FED panel was vacuum-sealed. In this method, we could achieve more 153 times increased conductance and 200 times increased vacuum efficiency than conventional tube packaging method. The vacuum level in panel, by SRG test, was maintained about low 10$_{-4}$ Torr during above two months And, the light emission was observed to 0.7-inch tubeless packaged FED. Then anode current was 34 $\mu$ A. Emission stability was constantly measured for 10 days.

  • PDF