• 제목/요약/키워드: FEA Model

검색결과 547건 처리시간 0.027초

Evaluation of reliability of zirconia materials to be used in implant-retained restoration on the atrophic bone of the posterior maxilla: A finite element study

  • Degirmenci, Kubra;Kocak-Buyukdere, Ayse;Ekici, Bulent
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권2호
    • /
    • pp.112-119
    • /
    • 2019
  • PURPOSE. Zirconia materials have been used for implant-retained restorations, but the stress distribution of zirconia is not entirely clear. The aim of this study is to evaluate the stress distribution and risky areas caused by the different design of zirconia restorations on the atrophic bone of the posterior maxilla. MATERIALS AND METHODS. An edentulous D4-type bone model was prepared from radiography of an atrophic posterior maxilla. Monolithic zirconia and zirconia-fused porcelain implant-retained restorations were designed as splinted or non-splinted. 300-N occlusal forces were applied obliquely. Stress analyses were performed using a 3D FEA program. RESULTS. According to stress analysis, the bone between the 1) molar implant and the 2) premolar in the non-splinted monolithic zirconia restoration model was stated as the riskiest area. Similarly, the maximum von Mises stress value was detected on the bone of the non-splinted monolithic zirconia models. CONCLUSION. Splinting of implant-retained restorations can be more critical for monolithic zirconia than zirconia fused to porcelain for the longevity of the bone.

Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation

  • Nguyen, Cong-Uy;Lee, So-Young;Huynh, Thanh-Canh;Kim, Heon-Tae;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.405-420
    • /
    • 2019
  • In this study, vibration characteristics of offshore wind turbine tower (WTT) with gravity-based foundation (GBF) are identified from dynamic responses under wave-induced excitations. The following approaches are implemented to achieve the objective. Firstly, the operational modal analysis methods such as frequency domain decomposition (FDD) and stochastic subspace identification (SSI) are selected to estimate modal parameters from output-only dynamic responses. Secondly, a GBF WTT model composed of superstructure, substructure and foundation is simulated as a case study by using a structural analysis program, MIDAS FEA. Thirdly, wave pressures acting on the WTT structure are established by nonlinear regular waves which are simulated from a computational fluid software, Flow 3D. Wave-induced acceleration responses of the target structure are analyzed by applying the simulated wave pressures to the GBF WTT model. Finally, modal parameters such as natural frequencies and mode shapes are estimated from the output-only acceleration responses and compared with the results from free vibration analysis. The effect of wave height and period on modal parameter extraction is also investigated for the mode identification of the GBF WTT.

Effect of bolt preloading on rotational stiffness of stainless steel end-plate connections

  • Yuchen Song;Brian Uy
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.547-564
    • /
    • 2023
  • This study investigates the effect of bolt preloading on the rotational stiffness of stainless steel end-plate connections. An experimental programme incorporating 11 full-scale joint specimens are carried out comparing the behaviours of fully pre-tensioned (PT) and snug-tightened (ST) flush/extended end-plate connections, made of austenitic or lean duplex stainless steels. It is observed from the tests that the presence of bolt preloading leads to a significant increase in the rotational stiffness. A parallel finite element analysis (FEA) validated against the test results demonstrates that the geometric imperfection of end-plate has a strong influence on the moment-rotation response of preloaded end-plate connections, which is crucial to explain the observed "two-stage" behaviour of these connections. Based on the data obtained from the tests and FE parametric study, the performance of the Eurocode 3 predictive model is evaluated, which exhibits a significant deviation in predicting the rotational stiffness of stainless steel end-plate connections. A modified bi-linear model, which incorporates three key properties, is therefore proposed to enable a better prediction. Finally, the effect of bolt preloading is demonstrated at the system (structure) level considering the serviceability of semi-continuous stainless steel beams with end-plate connections.

FE validation of the equivalent diameter calculation model for grouped headed studs

  • Spremic, Milan;Pavlovic, Marko;Markovic, Zlatko;Veljkovic, Milan;Budjevac, Dragan
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.375-386
    • /
    • 2018
  • Existing design codes for steel-concrete composite structures give only general information about the shear connection provided by headed studs in group arrangement. Grouting of the openings in prefabricated concrete slabs, where the grouped headed studs are placed in the deck pockets is alternative to cast-in-place decks to accomplish fast execution of composite structures. This paper considers the possibility to reduce the distance between the studs within the group, bellow the Eurocode limitations. This may lead to increased competitiveness of the prefabricated construction because more studs are placed in the group if negative effectives of smaller distances between studs are limited. The main purpose of this work is to investigate these limits and propose an analytical calculation model for prediction of the shear resistance of grouped stud arrangements in the deck pockets. An advanced FEA model, validated by results of push-out experiments, is used to analyze the shear behavior of the grouped stud with smaller distance between them than recommended by EN 1994-1. Calculation model for shear resistance, which is consistent with the existing Eurocode rules, is proposed based on a newly introduced equivalent diameter of the stud group, $d_G$. The new calculation model is validated by comparison to the results of FE parametric study. The distance between the studs in the longitudinal direction and the number of stud rows and columns in the group are considered as the main variables.

VIRTUAL PREDICTION OF A RADIAL-PLY TIRE'S IN-PLANE FREE VIBRATION MODES TRANSMISSIBILITY

  • CHANG Y. P.;EL-GINDY M.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.149-159
    • /
    • 2005
  • A full nonlinear finite element P185/70Rl4 passenger car radial-ply tire model was developed and run on a 1.7-meter-diameter spinning test drum/cleat model at a constant speed of 50 km/h in order to investigate the tire transient response characteristics, i.e. the tire in-plane free vibration modes transmissibility. The virtual tire/drum finite element model was constructed and tested using the nonlinear finite element analysis software, PAM-SHOCK, a nonlinear finite element analysis code. The tire model was constructed in extreme detail with three-dimensional solid, layered membrane, and beam finite elements, incorporating over 18,000 nodes and 24 different types of materials. The reaction forces of the tire axle in vertical (Z axis) and longitudinal (X axis) directions were recorded when the tire rolled over a cleat on the drum, and then the FFT algorithm was applied to examine the transient response information in the frequency domain. The result showed that this PI 85/70Rl4 tire has clear peaks of 84 and 45 Hz transmissibility in the vertical and longitudinal directions. This result was validated against more than 10 previous studies by either theoretical or experimental approaches and showed excellent agreement. The tire's post-impact response was also investigated to verify the numerical convergence and computational stability of this FEA tire model and simulation strategy, the extraordinarily stable scenario was confirmed. The tire in-plane free vibration modes transmissibility was successfully detected. This approach was never before attempted in investigations of tire in-plane free vibration modes transmission phenomena; this work is believed to be the first of its kind.

임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석 (Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load)

  • 장종석;정용태;정재헌
    • 구강회복응용과학지
    • /
    • 제21권1호
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

하이브리드 유한요소해석을 위한 인공지능 조인트 모델 개발 (Development of Artificial Intelligence Joint Model for Hybrid Finite Element Analysis)

  • 장경석;임형준;황지혜;신재윤;윤군진
    • 한국항공우주학회지
    • /
    • 제48권10호
    • /
    • pp.773-782
    • /
    • 2020
  • 심층신경망 기반 하이브리드 유한요소해석을 위한 조인트 모델 방법 구축을 소개한다. 트렉터의 앞차축에서 다양한 체결 조건에 의해 유발되는 복잡한 거동 상태를 가지는 볼트와 베어링의 재료 모델을 심층신경망으로 대체했다. 볼트는 6자유도를 갖는 1차원 티모센코 빔 요소를 이용했고, 베어링은 3차원 솔리드 요소를 이용했다. 다양한 하중 조건을 바탕으로 유한요소해석을 한 뒤, 모든 요소에서 응력-변형률 데이터를 추출하고 텐서플로를 이용하여 학습시켰다. 신경망 기반 유한요소해석을 할 때 추출된 데이터를 바탕으로 학습된 심층신경망은 ABAQUS 서브루틴 안에 포함되어 현재 해석 증분의 응력을 예측하고 접선강도행렬을 계산할 수 있게 했다. 학습된 심층신경망 조인트 모델의 일반화 성능은 훈련에 사용되지 않은 새로운 하중 조건에서 해석하여 검증하였다. 최종적으로 이 방법을 이용하여 심층신경망 기반 앞차축 해석을 진행하고 응력장 분포를 검증했다. 또한, 실제 트렉터의 3점 굽힘 실험 결과와 비교하여 심층신경망 기반 해석의 타당성을 검토했다.

강연선의 국부적 손상에 따른 응력 회복길이 분석 연구 (Study on Stress Recovery Length of 7-Wire Strand due to Local Damage)

  • 서동우;김병철;정규산;나원기;박기태
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.150-156
    • /
    • 2017
  • 본 연구는 PSC(Post Tensioned Concrete) 교량 및 사장교(Cable Stayed Bridge) 등에 많이 적용되는 강연선의 국부적 손상에 따른 응력 회복길이를 분석하였다. 강연선은 PC 강선(Prestressing Strand)을 여러 줄을 꼬은 강재이며, 재료의 특성상 준공후 지속적으로 손상이 발생하며 부식 등이 주요 손상원인이다. 이에 따른 손상에 따른 성능저하가 발생하지만, 구조적인 특성상 케이블 내부의 손상 정도 및 응력 변화 패턴을 파악하기 어렵다. 교량에 적용된 케이블의 경우 설치 형상에 따라 채수 등에 따라 부식에 취약한 부분이 발생하며, 이로 인해 국부적인 손상이 발생할 수 있다. 본 연구는 교량 Post-Tensioning 또는 케이블 사장재에 주로 적용되는 강연선(7-Wire Strand)의 국부적 손상에 따른 성능저하 경향 및 응력 회복길이를 FEA 해석을 통하여 분석하였다. 향후 본 연구에서 구축하고자 하는 해석모델을 활용하여 PSC 교량 및 사장교 케이블 등의 안전성 평가 및 잔존수명 예측에 활용될 수 있을 것으로 사료된다.

Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis

  • Chen, Lian-meng;Hu, Dong;Deng, Hua;Cui, Yu-hong;Zhou, Yi-yi
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1031-1043
    • /
    • 2016
  • Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis is studied in this paper. First, the element length was extracted as a fundamental variable, and the relationship between element length change and element internal force was established. By setting all pre-stresses in active cables to zero, the equation between the pre-stress deviation in the passive cables and the element length error was obtained to analyze and evaluate the error effects under different construction schemes. Afterwards, based on the probability statistics theory, the mathematical model of element length error is set up. The statistical features of the pre-stress deviation were achieved. Finally, a cable-strut tensile structure model with a diameter of 5.0 m was fabricated. The element length errors are simulated by adjusting the element length, and each member in one symmetrical unit was elongated by 3 mm to explore the error sensitivity of each type of element. The numerical analysis of error sensitivity was also carried out by the FEA model in ANSYS software, where the element length change was simulated by implementing appropriate temperature changes. The theoretical analysis and experimental results both indicated that different elements had different error sensitivities. Likewise, different construction schemes had different construction precisions, and the optimal construction scheme should be chosen for the real construction projects to achieve lower error effects, lower cost and greater convenience.

비공유 Node를 이용한 대구경 거울의 효율적인 유한요소 모델링 (Effective Finite Element Modeling for a Large Mirror System Using Separated Node Connectivity)

  • 편재원;양호순;이종웅;문일권
    • 한국광학회지
    • /
    • 제28권6호
    • /
    • pp.304-313
    • /
    • 2017
  • 대구경 거울과 이를 지지하는 flexure로 구성된 반사경 시스템의 최적화를 위하여 수행하는 유한요소 해석은 주어진 설계 조건을 만족하기 위하여 수많은 반복적인 계산과 실제 모델의 수정 작업이 필수적이다. 일반적으로 실제 모델의 수정은 node의 재설정과 새로이 구성된 각 부품의 경계면에서 node의 연속성을 맞추는 작업에 많은 시간이 소요되며 이는 유한요소 해석에 소요되는 시간 결정에 매우 중요한 요소가 된다. 모델링과 계산에 소요되는 시간을 절약하기 위하여 각 광학적 구성요소의 경계면에서 비공유 node 연결을 활용하는 새로운 광기계 해석을 제안하고자 한다. 새 모델링 기법에 의하여 계산된 광기계 해석과 경계면에서의 공유 node를 사용하는 기존의 광기계 해석을 비교하여, 계산에 의하여 얻어진 광기계적 성능은 거의 같았고, 주어진 조건에 도달하기 위한 계산 시간은 획기적으로 줄어드는 것을 확인할 수 있었다.