• 제목/요약/키워드: FEA Model

검색결과 547건 처리시간 0.032초

Class I Flextensional 변환기의 주파수 특성 변화 (Frequency Characteristics Variation of a Class I Flextensional Transducer)

  • 강국진;백종후;이영진
    • 한국전기전자재료학회논문지
    • /
    • 제22권2호
    • /
    • pp.142-150
    • /
    • 2009
  • We constructed a Class I flextensional transducer, and analyzed the variation of the resonance frequency of the transducer in relation to its structural and material variables. We used the FEM for the analysis. Total length of the transducer, thickness and material properties of the shell have large effects on the resonance frequency. While outer radius of the ceramic stack and material properties of the ceramic stack have no effect on the resonance frequency. In addition, the validation of the FE model was verified by manufacturing and comparison of the impedance analysis. Results of the present work can be utilized to design a Class I flextensional transducers of various resonance frequency.

Ultimate strength of stiffened panels subjected to non-uniform thrust

  • Anyfantis, Konstantinos N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.325-342
    • /
    • 2020
  • The current study is focused on the evaluation of the ultimate strength of stiffened panels found in ship hull structures that are subjected to combined uniaxial thrust, in-plane and out-of-plane bending moments. This loading condition, which is in general ignored when performing buckling checks, applies to representative control geometries (stiffener with attached plating) as a consequence of the linearly varying normal stresses along the ship's depth induced by the hull-girder vertical bending moment. The problem is generalized by introducing a non-uniform thrust described by a displacement ratio and rotation angle and by introducing the slenderness ratios, within the practical range of interest. The formed design space is explored through methods sourcing from Design of Experiments and by applying non-linear finite element procedures. Surrogate empirical models have been constructed through regression analysis and Response Surface Methods. An additional empirical model is provided to the literature for predicting the ultimate strength under uniaxial thrust. The numerical experimentation has shown that is a significant influence on the ultimate strength of stiffened panels as the thrust non-uniformity increases.

Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns

  • Ding, Fa-xing;Wang, Wenjun;Liu, Xue-mei;Wang, Liping;Sun, Yi
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.305-317
    • /
    • 2021
  • The mechanical behavior of the outer square inner circular concrete-filled dual steel tubular (SCCFT) stub columns under axial compression is investigated by means of experimental research, numerical analysis and theoretical investigation. Parameters such as diameter ratio, concrete strength and steel ratio were discussed to identify their influence on the mechanical properties of SCCFT short columns on the basis of the experimental investigation of seven SCCFT short columns. By establishing a finite element model, nonlinear analysis was performed to discuss the longitudinal and transverse stress of the dual steel tubes. The longitudinal stress characteristics of the core and sandwich concrete were also analyzed. Furthermore, the failure sequence was illustrated and the reasonable cross-section composition of SCCFT stub column was proposed. A formula to predict the axial load capacity of SCCFT stub column was advanced and verified by the results from experiment and the finite element.

Development of an Adaptive Neuro-Fuzzy Techniques based PD-Model for the Insulation Condition Monitoring and Diagnosis

  • Kim, Y.J.;Lim, J.S.;Park, D.H.;Cho, K.B.
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권11호
    • /
    • pp.1-8
    • /
    • 1998
  • This paper presents an arificial neuro-fuzzy technique based prtial discharge (PD) pattern classifier to power system application. This may require a complicated analysis method employ -ing an experts system due to very complex progressing discharge form under exter-nal stress. After referring briefly to the developments of artificical neural network based PD measurements, the paper outlines how the introduction of new emerging technology has resulted in the design of a number of PD diagnostic systems for practical applicaton of residual lifetime prediction. The appropriate PD data base structure and selection of learning data size of PD pattern based on fractal dimentsional and 3-D PD-normalization, extraction of relevant characteristic fea-ture of PD recognition are discussed. Some practical aspects encountered with unknown stress in the neuro-fuzzy techniques based real time PD recognition are also addressed.

  • PDF

Mineral/glass Reinforced Polypropylene Compound 재질 엔진 커버의 구조 및 동적 해석 (Structural and Dynamic Analysis of Mineral/glass Reinforced Polypropyolene Compound Automotive Engine Cover)

  • 김범근;김흥섭;김용수;조규철;정재관
    • Composites Research
    • /
    • 제20권3호
    • /
    • pp.63-66
    • /
    • 2007
  • Structural analysis of automotive engine cover under vibration excitation is performed by finite element analysis (FEA) in order to identify the critical area of the structure. Assembly load due to the tightening of the bolts as well as the vibration excitation were considered to describe the actual loading condition. Natural frequencies of the system were extracted considering the damping effect of the structure. Dynamic analysis was performed based on the extracted natural frequency of the system. Experimental modal analysis (EMA) and measurement of strains were performed to verify the results of the analysis. Analysis results correlated closely with the experimental results. Analysis and experiments showed that contribution of the assembly load should not be ignored to predict the structural failure of the engine cover.

강판 형상비 및 판폭두께비에 따른 강판전단벽의 변형모드 및 이력특성 (Hysteretic Characteristics and Deformation Modes of Steel Plate Shear Walls According to Aspect Ratios and Width-to-Thickness Ratios)

  • 신동현
    • 한국공간구조학회논문집
    • /
    • 제24권1호
    • /
    • pp.37-45
    • /
    • 2024
  • Steel plate shear walls (SPSWs) have been recognized as an effective seismic-force resisting systems due to their excellent strength and stiffness characteristics. The infill steel plate in a SPSW is constrained by a boundary frame consisting of vertical and horizontal structural members. The main purpose of this study was to investigate deformation modes and hysteretic characteristics of steel plate shear walls (SPSWs) to consider the effects of their aspect ratios and width-to-thicness ratios. The finite element model (FEM) was establish in order to simulate cyclic responses of SPSWs which have the two-side clamped boundary condition and made of conventional steel grade. The stress distribution obtained from the FEA results demonstrated that the principal stresses on steel plate with large thickness-to-width ratio were more uniformly distributed along its horizontal cross section due to the formation of multiple struts.

고세장비 항공기의 모드 시험 및 동특성 유한요소모델 개선 (Modal Test and Finite Element Model Update of Aircraft with High Aspect Ratio Wings)

  • 김상용
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.480-488
    • /
    • 2012
  • The aircrafts with high aspect ratio wings made by a composite material have been developed, which enable high energy efficiency and long-term flight by reducing air resistance and structural weight. However, they have difficulties in securing the aeroelastic stability such as the flutter because of their long and flexible wings. The flutter is unstable self-excited-vibration caused by interaction between the structural dynamics and the aerodynamics. It should be verified analytically prior to first flight test that the flutter does not happen in the range of flight mission. Normally, the finite element model is used for the flutter analysis. So it is important to construct the finite element model representing dynamic characteristics similar to those of a real aircraft. Accordingly, in this research, to acquire dynamic characteristics experimentally the modal test of the aircraft with high aspect ratio composite wings was conducted. And then the modal parameters from the finite element analysis(FEA) were compared with those from the modal test. To make analysis results closer to test results, the finite element model was updated by means of the sensitivity analysis on variables and the optimization. Finally, it was proved that the updated finite element model is reliable as compared with the results of the modal test.

간이물리모델을 이용한 원통형 압력용기의 내파해석 (Implosion Analysis of Circular Cylinder using Simplified Model)

  • 노인식;조상래;김용욱;한순흥;조윤식
    • 대한조선학회논문집
    • /
    • 제57권1호
    • /
    • pp.8-14
    • /
    • 2020
  • The implosion phenomena of pressure vessels operating in deep water under extremely high external pressure have been well known. The drastic energy release to ambient field in the form of pressure pulse is accompanied with catastrophic collapse of shell structure. Such a proximity shock wave could be a serious threat to the structural integrity of adjacent submerged body and several suspected accidents have been reported. In this study, basic research for the occurrence and development of shock wave due to implosion was carried out. The mechanism of pressure pulse generation and energy dissipation were investigated, and a simplified kinematic model to approximate the collapse modes of circular tubes which can be generated by external pressure and implosion was examined. Using the simplified kinematic model, the process of energy dissipation was formulated, and the magnitude of released pressure shock wave was estimated quantitatively. To investigate the validity of developed kinematic model and shock wave estimation process, the results from a nonlinear FE analysis code and collapse test carried out using pressure chamber were compared with the results from the developed kinematic model.

Model order reduction for Campbell diagram analysis of shaft-disc-blade system in 3D finite elements

  • Phuor, Ty;Yoon, GilHo
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.411-428
    • /
    • 2022
  • This paper presents the Campbell diagram analysis of the rotordynamic system using the full order model (FOM) and the reduced order model (ROM) techniques to determine the critical speeds, identify the stability and reduce the computational time. Due to the spin-speed-dependent matrices (e.g., centrifugal stiffening matrix), several model order reduction (MOR) techniques may be considered, such as the modal superposition (MS) method and the Krylov subspace-based MOR techniques (e.g., Ritz vector (RV), quasi-static Ritz vector (QSRV), multifrequency quasi-static Ritz vector (MQSRV), multifrequency/ multi-spin-speed quasi-static Ritz vector (MMQSRV) and the combined Ritz vector & modal superposition (RV+MS) methods). The proposed MMQSRV method in this study is extended from the MQSRV method by incorporating the rotational-speed-dependent stiffness matrices into the Krylov subspace during the MOR process. Thus, the objective of this note is to respond to the question of whether to use the MS method or the Krylov subspace-based MOR technique in establishing the Campbell diagram of the shaft-disc-blade assembly systems in three-dimensional (3D) finite element analysis (FEA). The Campbell diagrams produced by the FOM and various MOR methods are presented and discussed thoroughly by computing the norm of relative errors (ER). It is found that the RV and the MS methods are dominant at low and high rotating speeds, respectively. More precisely, as the spinning velocity becomes large, the calculated ER produced by the RV method is significantly increased; in contrast, the ER produced by the MS method is smaller and more consistent. From a computational point of view, the MORs have substantially reduced the time computing considerably compared to the FOM. Additionally, the verification of the 3D FE rotordynamic model is also provided and found to be in close agreement with the existing solutions.

Conceptual Design Optimization of Tensairity Girder Using Variable Complexity Modeling Method

  • Yin, Shi;Zhu, Ming;Liang, Haoquan;Zhao, Da
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권1호
    • /
    • pp.29-36
    • /
    • 2016
  • Tensairity girder is a light weight inflatable fabric structural concept which can be used in road emergency transportation. It uses low pressure air to stabilize compression elements against buckling. With the purpose of obtaining the comprehensive target of minimum deflection and weight under ultimate load, the cross-section and the inner pressure of tensairity girder was optimized in this paper. The Variable Complexity Modeling (VCM) method was used in this paper combining the Kriging approximate method with the Finite Element Analysis (FEA) method, which was implemented by ABAQUS. In the Kriging method, the sample points of the surrogate model were outlined by Design of Experiment (DOE) technique based on Optimal Latin Hypercube. The optimization framework was constructed in iSIGHT with a global optimization method, Multi-Island Genetic Algorithm (MIGA), followed by a local optimization method, Sequential Quadratic Program (SQP). The result of the optimization gives a prominent conceptual design of the tensairity girder, which approves the solution architecture of VCM is feasible and efficient. Furthermore, a useful trend of sensitivity between optimization variables and responses was performed to guide future design. It was proved that the inner pressure is the key parameter to balance the maximum Von Mises stress and deflection on tensairity girder, and the parameters of cross section impact the mass of tensairity girder obviously.