• Title/Summary/Keyword: FEA Model

Search Result 547, Processing Time 0.026 seconds

Three-dimensional numerical simulation and cracking analysis of fiber-reinforced cement-based composites

  • Huang, Jun;Huang, Peiyan
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.327-341
    • /
    • 2011
  • Three-dimensional graphic objects created by MATLAB are exported to the AUTOCAD program through the MATLAB handle functions. The imported SAT format files are used to produce the finite element mesh for MSC.PATRAN. Based on the Monte-Carlo random sample principle, the material heterogeneity of cement composites with randomly distributed fibers is described by the WEIBULL distribution function. In this paper, a concept called "soft region" including micro-defects, micro-voids, etc. is put forward for the simulation of crack propagation in fiber-reinforced cement composites. The performance of the numerical model is demonstrated by several examples involving crack initiation and growth in the composites under three-dimensional stress conditions: tensile loading; compressive loading and crack growth along a bimaterial interface.

A Study on the Ultimate Strength Behavior according to Analysis Boundary at Stiffened Plate (선체보강판의 해석영역에 따른 최종강도거동에 관한 연구)

  • 박주신;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.262-269
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of analysis range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

A Benchmark study on ultimate strength formulations of the aluminium stiffened panels under axial compression (알루미늄합금 보강판의 압축 최종강도 설계식의 비교연구)

  • ;;;O.F., Hughes;P.E., Hess
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.110-117
    • /
    • 2004
  • The aim of a benchmark study is carried out nine methods are employed for ULS analysis which implicitly predict the ultimate strength of aluminium stiffened panels under axial compression. For this purpose, DNV PULS, experimental and numerical data on the ultimate strength of panels were collected. Comparison of these experimental / numerical, DNV PULS / numerical, results with theoretical solutions by the candidate methods is performed. Also it's compared that ALPS/ULSAP program is based on closed-form formula for the ULS of plates and grillages under axial compression. It is considered that ALPS/ULSAP methodology provides quite accurate and reasonable ULS calculations by a comparison with more refined FEA. Comparison of these experimental data, numerical, computational software results with the simplified solutions obtained by the candidate methods is then performed. The model uncertainties associated with the candidate methods are studied in terms of mean bias and COV (i.e., coefficient of variation) against experiments and numerical solutions, and the relative performance of the various methods is discussed.

  • PDF

Influence Zones subjected to Pile-Soil-Tunnelling Interaction (파일-흙-터널의 상호거동에 따른 영향권)

  • Lee, Yong-Joo;Bassett, R. H.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1351-1360
    • /
    • 2005
  • New construction for public transport in congested urban areas will involve tunnel construction adjacent to existing building or bridge foundations and services due to the lack of surface space. Therefore, careful assessment of the important underground structure-soil-tunnelling interaction is relatively new, currently only limited information is available. In this study, the authors carried out FE analysis and the laboratory model test using the photogrammetric technique and suggested the influence zones associated with the normalised pile tip settlement during new tunnel construction.

  • PDF

A Study on the Frequency Characteristics of a Class I Flextensional Transducer (Class I Flextensional 변환기의 주파수 특성에 관한 연구)

  • Kang, Kook-Jin;Lee, Young-Jin;Paik, Jong-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.226-227
    • /
    • 2008
  • We constructed a class I Flextensional transducer, and analyzed the variation of the resonance frequency of the transducer in relation to its design variables. We used the FEM for the analysis. Major axis length, minor axis length, thickness and material properties of the shell have large effects on the resonance frequency. In addition, the validation of the FE model was verified by manufacturing and comparison of the impedance analysis.

  • PDF

Predictions of Nonlinear Behavior and Strength of Thick Composites with Fiber Waviness under Tensile/Compressive Load (굴곡진 보강섬유를 가진 두꺼운 복합재료의 인장/압축 비선형 거동 및 강도예측)

  • 유근수;전흥재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.819-822
    • /
    • 2001
  • Fiber waviness is one of manufacturing defects encountered frequently in thick composite structures. It affects significantly on the behavior as well as strength of thick composites. Thick composites with fiber waviness have two kinds of nonliearity. One is material nonlinearity, and the other is geometrical nonliearity due to fiber waviness. There are only a few studies that have considered both material and geometrical nonlinearities. In this paper, a FEA model was proposed to predict nonlinear behavior and strength of thick composites with fiber waviness.

  • PDF

Performance Test and Finite Element Analysis of Pneumatic Muscle Actuator (공기압 근육 구동기의 유한요소 해석 및 성능시험)

  • Huh Shin;Bae Sang-Kyu;Kim Dong-Soo;Kim Wan-Doo;Hong Sung-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.662-669
    • /
    • 2006
  • The pneumatic muscle actuator consists of an air bellows tube with two end-flanges. The air bellows tube is made from rubber layers and flexible sheathing formed from nylon 6 fibers. This structure can be stretched or compressed to convert the radial expansive forces into contractile forces. We performed the finite element analysis and the performance test of pneumatic muscle actuator. Also, the pneumatic muscle actuator was manufactured and tested by home-made tester. The results of FEA was similar with performance test below the maximum error of 42 %.

Optimal Design of Discharge Electrode Frame in Electrostatic Precipitator (전기집전기 방전극 프레임 최적 설계)

  • 이후광;최재승;황석환;조창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.626-629
    • /
    • 1997
  • In this study, position optimization of insulation rods and suspension rods in discharge electrode frame of electrostatic precipitator(EP) is performed using finite element analysis(FEA). The object of the optimization is to minimize the difference of altitudes in unevenly sagged horizontal structure and to regulate the size of materials within the allowable stress bounds. Uppermost horizontal channel of discharge electrode frame is highly stressed and uniformity of lowest horizontal angle depends on the position of rods. Ten types of frame are analyzed and one recommended model is presented.

  • PDF

A Study on the Residual Stresses Using Elatoplastic Analysis in Metal matrix Composites (단섬유 금속복합재료의 탄소성 잔류응력해석)

  • 김흥건
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.173-179
    • /
    • 1996
  • A computer simulation has been performed for the application to the elastoplastic stress analysis in a discontinuous composite solid. To obtain the internal field quantities of composite the micromechanics analysis and finite element analysis (FEA) were implemented. As the procedure the reasonably optimized FE mesh generations the appropriate imposition of boundary condition and the relevant postprocessing such as elastoplastic thermomechanical analysis were taken into account. For the numerical illustration an aligned axisymmetric single fiber model has been employed to assess field quantities. It was found that the proposed simulation methodology for stress analysis is applicable to the complicated inhomogeneous solid for the investigation of micromechanical behavior.

  • PDF

Finite element analysis of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams

  • Kim, SangHun;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.401-416
    • /
    • 2004
  • This paper presents investigation of a three-dimensional (3-D) nonlinear finite element model analysis to examine the behavior of reinforced concrete beams strengthened with Carbon Fiber Reinforced Polymer (CFRP) composites to enhance the flexural capacity and ductility of the beams. Three-dimensional nonlinear finite element models were developed between the internal reinforcement and concrete using a smeared relationship. In addition, bond models between the concrete surface and CFRP composite were developed using a smeared bond for general analyses and a contact bond for sensitivity analyses. The results of the FEA were compared with the experimental data on full-scale members. The results of two finite-element bonding models showed good agreement with those of the experimental tests.