• Title/Summary/Keyword: FEA

Search Result 1,685, Processing Time 0.028 seconds

Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis (임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구)

  • Eom, Tae-Gwan;Suh, Seung-Woo;Jeon, Gyeo-Rok;Shin, Jung-Wook;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • Statement of problem: Loosening or fracture of the abutment screw is one of the common problems related to the dental implant. Generally, in order to make the screw joint stable, the preload generated by tightening torque needs to be increased within the elastic limit of the screw. However, additional tensile forces can produce the plastic deformation of abutment screw when functional loads are superimposed on preload stresses, and they can elicit loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum tightening torque that maximizes a fatigue life and simultaneously offer a reasonable degree of protection against loosening. Purpose: The purpose of this study was to present the influence of tightening torque on the implant-abutment screw joint stability with the 3 dimensional finite element analysis. Material and methods: In this study, the finite element model of the implant system with external butt joint connection was designed and verified by comparison with additional theoretical and experimental results. Four different amount of tightening torques(10, 20, 30 and 40 Ncm) and the external loading(250 N, $30^{\circ}$) were applied to the model, and the equivalent stress distributions and the gap distances were calculated according to each tightening torque and the result was analyzed. Results: Within the limitation of this study, the following results were drawn; 1) There was the proportional relation between the tightening torque and the preload. 2) In case of applying only the tightening torque, the maximum stress was found at the screw neck. 3) The maximum stress was also shown at the screw neck under the external loading condition. However in case of applying 10 Ncm tightening torque, it was found at the undersurface of the screw head. 4) The joint opening was observed under the external loading in case of applying 10 Ncm and 20 Ncm of tightening torque. 5) When the tightening torque was applied at 40 Ncm, under the external loading the maximum stress exceeded the allowable stress value of the titanium alloy. Conclusion: Implant abutment screw must have a proper tightening torque that will be able to maintain joint stability of fixture and abutment.

Quality Properties of Brand Pork (브랜드화된 돈육의 품질 특성)

  • Jin, Sang-Keun;Kim, Il-Suk;Lee, Jae-Ryong;Shin, Teak-Soon
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.470-479
    • /
    • 2008
  • This study was carried out to investigate the quality characteristics of brands pork: a crossbred between Korean native and wild pigs (Y), a commercial LYD breed fed with probiotics (J), and a commercial LYD fea without probiotics (M). The moisture and crude ash content of Y treated pork was higher than those for J and M brands, but the crude fat content of J pork was significantly lower (p<0.05) than Y and M brands. The moisture and crude fat contents of Y gilts were higher (p<0.05) than those of barrows. The pH values of Y gilts were higher (p<0.05) than those of gilts of J and M brands. The L and W values of Y pork were lower (p<0.05) than with J and M brands. The springiness value of J pork was significantly higher (p<0.05) than Y and M porks. The sensory scores of Y pork were higher than pork of J and M. The juiciness of gilts of M brands was higher (p<0.05) than for barrows. With regard to the fatty acid profiles among the pork loins, linoleic and arachidonic acid contents of Y pork were higher than with J and M, while the palmitic, pamitoleic, stearic, and oleic acid contents were lower. The saturated fatty acid (SFA) content of Y pork was lower than that for J and M ones, while the unsaturated fatty acids (USFA), essential fatty acids (FFA), USFA/SFA ratio, FFA/SFA ratio, and EFA/USFA ratio were higher. The stearic acid content of M barrows was higher (p<0.05) than that for gilts.

The influence of composite resin restoration on the stress distribution of notch shaped noncarious cervical lesion A three dimensional finite element analysis study (복합레진 수복물이 쐐기형 비우식성 치경부 병소의 응력 분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Lee, Chae-Kyung;Park, Jeong-Kil;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.69-79
    • /
    • 2007
  • The purpose of this study was to investigate the effects of composite resin restorations on the stress distribution of notch shaped noncarious cervical lesion using three-dimensional (3D) finite element analysis (FEA). Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072 ; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid or flowable resin and each restoration was simulated with adhesive layer thickness ($40{\mu}m$) A static load of 500 N was applied on a point load condition at buccal cusp (loading A) and palatal cusp (loading B). The principal stresses in the lesion apex (internal line angle of cavity) and middle vertical wall were analyzed using ANSYS. The results were as follows 1. Under loading A, compressive stress is created in the unrestored and restored cavity. Under loading B, tensile stress is created. And the peak stress concentration is seen at near mesial corner of the cavity under each load condition. 2. Compared to the unrestored cavity, the principal stresses at the cemeto-enamel junction (CEJ) and internal line angle of the cavity were more reduced in the restored cavity on both load con ditions. 3. In teeth restored with hybrid composite, the principal stresses at the CEJ and internal line angle of the cavity were more reduced than flowable resin.

Global Cosmetics Trends and Cosmceuticals for 21st Century Asia (화장품의 세계적인 개발동향과 21세기 아시아인을 위한 기능성 화장품)

  • T.Joseph Lin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.1
    • /
    • pp.5-20
    • /
    • 1997
  • War and poverty depress the consumption of cosmetics, while peace and prosperity encourage their proliferation. With the end of World War II, the US, Europe and Japan witnessed rapid growth of their cosmetic industries. The ending of the Cold War has stimulated the growth of the industry in Eastern Europe. Improved economies, and mass communication are also responsible for the fast growth of the cosmetic industries in many Asian nations. The rapid development of the cosmetic industry in mainland China over the past decade proves that changing economies and political climates can deeply affect the health of our business. In addition to war, economy, political climate and mass communication, factors such as lifestyle, religion, morality and value concepts, can also affect the growth of our industry. Cosmetics are the product of the society. As society and the needs of its people change, cosmetics also evolve with respect to their contents, packaging, distribution, marketing concepts, and emphasis. In many ways, cosmetics mirror our society, reflecting social changes. Until the early 70's, cosmetics in the US were primarily developed for white women. The civil rights movement of the 60's gave birth to ethnic cosmetics, and products designed for African-Americans became popular in the 70's and 80's. The consumerism of the 70's led the FDA to tighten cosmetic regulations, forcing manufacturers to disclose ingredients on their labels. The result was the spread of safety-oriented, "hypoallergenic" cosmetics and more selective use of ingredients. The new ingredient labeling law in Europe is also likely to affect the manner in which development chemists choose ingredients for new products. Environmental pollution, too, can affect cosmetics trends. For example, the concern over ozone depletion in the stratosphere has promoted the consumption of suncare products. Similarly, the popularity of natural cosmetic ingredients, the search of non-animal testing methods, and ecology-conscious cosmetic packaging seen in recent years all reflect the profound influences of our changing world. In the 1980's, a class of efficacy-oriented skin-care products, which the New York Times dubbed "serious" cosmetics, emerged in the US. "Cosmeceuticals" refer to hybrids of cosmetics and pharmaceuticals which have gained importance in the US in the 90's and are quickly spreading world-wide. In spite of regulatory problems, consumer demand and new technologies continue to encourage their development. New classes of cosmeceuticals are emerging to meet the demands of increasingly affluent Asian consumers as we enter the 21st century. as we enter the 21st century.

  • PDF

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.