• Title/Summary/Keyword: FE-simulations

Search Result 247, Processing Time 0.018 seconds

Prediction of Steady-state Strip Profile during Hot Rolling - PartⅡ: Development of a Mathematical Model (열연 공정 정상상태 판 프로파일 예측 - PartⅡ: 수식 모델 개발)

  • Lee, J. S.;Hwang, S. M.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2016
  • In the current study, we present a new model for the prediction of the strip profile and the residual stresses. This new approach is an analytical model that predicts the residual stresses from the effect of post-deformation. Since the residual stress cannot exceed the yield strength of the material, post-yielding may possibly occur in the post-deformation zone prior to the strip reaching the steady-state zone. The prediction accuracy of the proposed model is examined through comparison with the predictions from 3-D finite element (FE) simulations.

Numerical and Experimental Investigations of the Effects of Stem Angle on the Resistance of an Icebreaking Cargo Vessel in Pack Ice Conditions

  • Shin, Yong Jin;Kim, Moon Chan;Kim, Beom Jun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.67-80
    • /
    • 2016
  • The resistance performance of an icebreaking cargo vessel with varied stem angles is investigated numerically and experimentally. Ship-ice interaction loads are numerically calculated based on the fluid structure interaction (FSI) method using the commercial FE package LS-DYNA. Test results obtained from model testing with synthetic ice at the Pusan National University towing tank and with refrigerated ice at the National Research Council's (NRC) ice tank are used to validate and benchmark the numerical simulations. The designed icebreaking cargo vessel with three stem angles ($20^{\circ}$, $25^{\circ}$, and $30^{\circ}$) is used as the target ship for three concentrations (90%, 80%, and 60%) of pack ice conditions. The comparisons between numerical and experimental results are shown and our main conclusions are given.

Experimental Investigation on the Flow Control in Forward-Backward Extrusion of Piston-Pin for Automobile (자동차용 피스톤 핀의 전.후방압출에서 유동제어에 관한 실험적 연구)

  • Park, Jong-Nam;Park, Tae-Joon;Kim, Dong-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1366-1375
    • /
    • 2002
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. The model experiment results are in good agreement with the FE simulation ones.

Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity

  • Bobinski, J.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.433-455
    • /
    • 2004
  • The paper presents results of FE-calculations on shear localizations in quasi-brittle materials during both an uniaxial plane strain compression and uniaxial plane strain extension. An elasto-plastic model with a linear Drucker-Prager type criterion using isotropic hardening and softening and non-associated flow rule was used. A non-local extension was applied in a softening regime to capture realistically shear localization and to obtain a well-posed boundary value problem. A characteristic length was incorporated via a weighting function. Attention was focused on the effect of mesh size, mesh alignment, non-local parameter and imperfections on the thickness and inclination of shear localization. Different methods to calculate plastic strain rates were carefully discussed.

A Study on the Optimal die angle of the Torsional Forward Extrusion Process (비틀림 전방압출 공정의 최적다이각에 관한 연구)

  • Lee S. I.;Kim Y. H.;Ma Xiang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.23-32
    • /
    • 2002
  • The torsional forward extrusion is the process that is executed by punch travel and die rotation. The advantages of having the die rotation on this process are that forming load can be reduced and optimal die angle can be increased. This provides a possibility to extrude cold-worded material where a large extrusion force and die angle are required. Also, this process can improve the material properties owing to the high deformation and uniform strain distribution. The forming load and optimal die angle of this process are determined by the upper bound analysis using stream function and the optimization technique. To verify the theoretical result, we have carried out experiments and FE simulations using DEFORM3D.

  • PDF

Finite Element Analysis for the Drawing of Square Rod from Round Bar (원형봉에서 정사각재 인발공정의 유한요소 해석)

  • Choi, Y.;Kim, H.C.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.205-209
    • /
    • 1998
  • Unlike the drawing of round section from round bar, the shaped drawing like polygonal section is known to have influence not only drawing stress but also comer filling. Therefore, this study analyze the drawing process of suqare rod from round bar using nonsteady state rigid-plastic FEM. To investigate effects of process variables of the drawing process of square rod from round bar, FE-simulations with variety of reduction in area and semi-die angle for a given frictional condition have been conduction. By this results, it has to suggest optimal process condition on the drawing stress and the comer filling. In addition, it has determined forming limit considering necking and bulging.

  • PDF

Prediction of the Performance of a Deformation Tube for Railway Cars using the Slab Method (초등해법을 이용한 철도차량 변형튜브 성능 예측에 관한 연구)

  • Kim, J.M.;Lee, J.K.;Kim, K.N.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.124-129
    • /
    • 2016
  • Recently, global railway car makers are competing desperately in developing high-speed railway vehicles. Ensuring passenger safety during a crash is essential. The design and the manufacturing of energy absorbing components are becoming more and more important. A deformation tube is a typical passive energy absorbing component for railway cars. In the current study the slab method was used to predict the energy absorbing capability of a deformation tube during the early design stage. The usefulness of the prediction method is verified through the comparisons between the results of FE simulations and those of the prediction method.

A tensile criterion to minimize FE mesh-dependency in concrete beams under blast loading

  • Gang, HanGul;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • This paper focuses on the mesh-size dependency in numerical simulations of reinforced concrete (RC) structures subjected to blast loading. A tensile failure criterion that can minimize the mesh-dependency of simulation results is introduced based on the fracture energy theory. In addition, conventional plasticity based damage models for concrete such as the CSC model and the HJC model, which are widely used for blast analyses of concrete structures, are compared with the orthotropic model that adopts the introduced tensile failure criterion in blast tests to verify the proposed criterion. The numerical predictions of the time-displacement relations at the mid-span of RC beams subjected to blast loading are compared with experimental results. The analytical results show that the numerical error according to the change in the finite element mesh size is substantially reduced and the accuracy of the numerical results is improved by applying a unique failure strain value determined by the proposed criterion.

Experimental Investigation on the Flow Control of Hub Clutch for Automobile (자동차용 허브 클러치의 유동제어에 관한 실험적 연구)

  • 박종남;김동환;김병민
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.430-438
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in orther to change of the cold forging from conventional deep drawing forming. This technology can be summarized the complex forming, which consists of bulk forming and sheet forming, and multi-action forging, which be performed double action press. The proposed technology is applied to hub clutch model which is part of auto-transmission for automobile. The purpose of this study is to investigate the material flow behavior of hub clutch through control the relative velocity ratio and the stroke of mandrel and punch using the flow forming technique. First of all, the finite element simulations are applied to analyse optimal process conditions to prevent flow defect(necking defect etc.) from non-uniform metal flow, then the results are compared with the plasticine model material experiments. The punch load for real material is predict from similarity law. Finally, the model material experiment results are in good agreement with the FE simulation ones.

Pre-Bending Analysis of Tie-Bar for Hydroforming (Hydroforming을 위한 Tie-bar의 예비굽힘성형 해석)

  • 강대철;전병희;성부용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.255-261
    • /
    • 2000
  • Tube bending is one of the conventional manufacturing process. Recently, tube bending was highlighted in automotive industry by hydroforming. Tube hydroforming process is divided into pre-bending process and hydroforming process. It's initial state is very important in die cavity of first hydroforming process. So tube bending is important factor of the hydroforming process. In this paper, two pre-bending simulations, by a rotary draw bending machine and a bend die. This paper presents the simulation results in pre-bending process that is used to form an automotive part, tie-bar.

  • PDF