• 제목/요약/키워드: FE simulations

검색결과 245건 처리시간 0.025초

유한요소법과 연성파괴이론에 의한 AZ31합금 판재의 온간 드로잉 공정에서의 파단예측 (Failure Prediction for an AZ31 Alloy Sheet during Warm Drawing using FEM Combined with Ductile Fracture Criteria)

  • 김상우;이영선
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.258-264
    • /
    • 2012
  • The forming failure of AZ31 alloy sheet during deep drawing processes was predicted by the FEM and ductile fracture criteria. Uniaxial tensile tests of round-notched specimens and FE simulations were performed to calculate the critical damage values for three ductile fracture criteria. The critical damage values for each criterion were expressed as a function of strain rate at various temperatures. In order to determine the best criterion for failure prediction, Erichsen cupping test under isothermal conditions at $250^{\circ}C$ were conducted. Based on the plastic deformation histories obtained from the FE analysis of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under bi-axial tension deformation. The results indicate that the Cockcroft-Latham criterion had good agreement with the experimental data. In addition, the FE analysis combined with the criterion was applied to another deep drawing process using an irregular shaped blank and these additional results were verified with experimental tests.

압분공정의 유한요소 해석을 위한 AZO 분말의 Closed-die Compaction 실험 (Closed-die Compaction of AZO Powder for FE Simulation of Powder Compaction)

  • 김용배;이종섭;이상목;박훈재;이근안
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.228-233
    • /
    • 2012
  • In this study, powder compaction of AZO (alumina doped zinc oxide) powder was performed with a MTS 810 test system using a cylindrical die having a diameter of 10mm. Pressure-density curves were measured based on the load cell and displacement of the punch. The AZO powder compacts with various densities were formed to investigate the mechanical properties such as fracture stress of the AZO powder as a function of the compact density. Two types of compression tests were conducted in order to estimate the fracture stress using different loading paths: a diameteral compression test and a uniaxial compression test. The pressure-density curves of the AZO powder were obtained and the fracture stress of the compacted powders with various densities was estimated. The results show that the compact pressure dramatically increases as the density increases. Based on the experimental results, calibration of the modified Drucker-Prager/Cap model of the AZO powder for use in FE simulations was developed.

A multi-resolution analysis based finite element model updating method for damage identification

  • Zhang, Xin;Gao, Danying;Liu, Yang;Du, Xiuli
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.47-65
    • /
    • 2015
  • A novel finite element (FE) model updating method based on multi-resolution analysis (MRA) is proposed. The true stiffness of the FE model is considered as the superposition of two pieces of stiffness information of different resolutions: the pre-defined stiffness information and updating stiffness information. While the resolution of former is solely decided by the meshing density of the FE model, the resolution of latter is decided by the limited information obtained from the experiment. The latter resolution is considerably lower than the former. Second generation wavelet is adopted to describe the updating stiffness information in the framework of MRA. This updating stiffness in MRA is realized at low level of resolution, therefore, needs less number of updating parameters. The efficiency of the optimization process is thus enhanced. The proposed method is suitable for the identification of multiple irregular cracks and performs well in capturing the global features of the structural damage. After the global features are identified, a refinement process proposed in the paper can be carried out to improve the performance of the MRA of the updating information. The effectiveness of the method is verified by numerical simulations of a box girder and the experiment of a three-span continues pre-stressed concrete bridge. It is shown that the proposed method corresponds well to the global features of the structural damage and is stable against the perturbation of modal parameters and small variations of the damage.

Effectiveness of Ni-based and Fe-based cladding alloys in delaying hydrogen generation for small modular reactors with increased accident tolerance

  • Alan Matias Avelar;Fabio de Camargo;Vanessa Sanches Pereira da Silva;Claudia Giovedi;Alfredo Abe;Marcelo Breda Mourao
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.156-168
    • /
    • 2023
  • This study investigates the high temperature oxidation behaviour of a Ni-20Cr-1.2Si (wt.%) alloy in steam from 1200 ℃ to 1350 ℃ by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). The results demonstrate that exposed Ni-based alloy developed a thin oxide scale, consisted mainly of Cr2O3. The oxidation kinetics obtained from the experimental results was applied to evaluate the hydrogen generation considering a simplified reactor core model with different cladding alloys following an unmitigated Loss-Of-Coolant Accident (LOCA) scenario in a hypothetical Small Modular Reactor (SMR). Overall, experimental data and simulations results show that both Fe-based and Ni-based alloys may enhance cladding survivability, delaying its melting, as well as reducing hydrogen generation under accident conditions compared to Zr-based alloys. However, a substantial neutron absorption occurs when Ni-based alloys are used as cladding for current uranium-dioxide fuel systems, even when compared to Fe-based alloys.

초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석 (A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method)

  • 김수한;이원주;신현성
    • Composites Research
    • /
    • 제36권5호
    • /
    • pp.329-334
    • /
    • 2023
  • 기존의 멀티스케일 유한요소법(Multiscale finite element, FE2 )은 거시 스케일의 모든 적분점에서 대표 체적요소(representative volume element, RVE)의 미시 경계치 문제를 반복적으로 계산하기 때문에 긴 해석 시간과 많은 데이터 저장 공간을 필요로 한다. 이를 해결하기 위해 본 연구에서 평균장 균질화 데이터 기반 멀티스케일 해석 기법을 개발하였다. 데이터 기반 전산역학(data-driven computational mechanics, DDCM) 해석은 변형률-응력 데이터 셋을 직접적으로 사용하는 모델-프리(model-free)접근 방식이다. 멀티스케일 해석을 수행하기 위해, 평균장 균질화(mean-field homogenization)를 활용하여 복합재의 미세구조에 대한 변형률-응력 데이터베이스(database)를 효율적으로 구축하고, 이를 기반으로 데이터 기반 전산역학 시뮬레이션을 수행하였다. 본 논문에서는 개발한 멀티 스케일 해석 프레임워크(framework)를 예제에 적용하여, 초탄성(hyperelasticity) 복합재의 미세 구조를 고려한 데이터 기반 전산역학 시뮬레이션 결과를 확인하였다. 따라서, 데이터 기반 전산역학 접근 방식을 활용한 멀티스케일 해석기법은 다양한 재료 및 구조에 적용될 수 있으며, 멀티스케일 해석 연구 및 응용 가능성을 열어줄 것으로 기대된다.

Dislocation-oxide interaction in Y2O3 embedded Fe: A molecular dynamics simulation study

  • Azeem, M. Mustafa;Wang, Qingyu;Li, Zhongyu;Zhang, Yue
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.337-343
    • /
    • 2020
  • Oxide dispersed strengthened (ODS) steel is an important candidate for Gen-IV reactors. Oxide embedded in Fe can help to trap irradiation defects and enhances the strength of steel. It was observed in this study that the size of oxide has a profound impact on the depinning mechanism. For smaller sizes, the oxide acts as a void; thus, letting the dislocation bypass without any shear. On the other hand, oxides larger than 2 nm generate new dislocation segments around themselves. The depinning is similar to that of Orowan mechanism and the strengthening effect is likely to be greater for larger oxides. It was found that higher shear deformation rates produce more fine-tuned stress-strain curve. Both molecular dynamics (MD) simulations and BKS (Bacon-Knocks-Scattergood) model display similar characteristics whereby establishing an inverse relation between the depinning stress and the obstacle distance. It was found that (110)oxide || (111)Fe (oriented oxide) also had similar characteristics as that of (100)oxide || (111)Fe but resulted in an increased depinning stress thereby providing greater resistance to dislocation bypass. Our simulation results concluded that critical depinning stress depends significantly on the size and orientation of the oxide.

유화 Spinel $Co_{0.95}Fe_{0.05}Cr_2S_4$에서 Jahn - Teller Distortion에 의한 Mossbauer 공명 흡수선의 변화에 관한 연구 (The Mossbauer Spectra Changes Due to the Jahn-Teller Distortion in Sulphur Spinel $Co_{0.95}Fe_{0.05}Cr_2S_4$)

  • 서정철;이민용;고영복
    • 한국자기학회지
    • /
    • 제7권5호
    • /
    • pp.225-231
    • /
    • 1997
  • 유화 Spinel $Co_{0.95}$ F $e_{0.05}$C $r_{2}$ $S_{4}$에 대한 Mossbauer Spectrum을 자기적 전이온도 부근에서부터 액체 헬륨 온도까지 여러 온도 범위에 측정하였다. 사면체 자리에 놓여있는 F $e^{2+}$ 이온은 Jahn-Teller active로서의 역할을 하여 자기적 전이온도 이하에서부터 결정 구조상에 일그러짐을 유도하여 전기 4중극자를 형성하게된다. 초미세 자기장은 100 K 근방에서 최대 값을 갖고 온도가 감소할수록 급히 감소하는 현상을 보이고 있다. 전기 4중극자 상호작용과 자기 2중극자 상호작용 크기의 비 R은 자기적 전이온도에서 0의 값이었으나 온도가 내려감에 따라 증가하여 4.2 K 에서는 5.4의 값을 가지고 있다. 초미세 자기장의 방향과 최대 전기장 기울기 주축과의 각 .theta. 의 최적 값은 0이며 최대 전기장 기울기의 비 대칭성 매개변수 .eta. 는 0.25 근방임이 밝혀졌다. 이 경우의 Mossbauer spectra 컴퓨터 모사는 실험결과와 잘 일치하고 있다....

  • PDF

보스-리브 시험 시 펀치 형상 및 마찰 조건에 따른 변형 양상에 대한 연구 (Effect of Punch Design and Friction Condition on Deformation Pattern in Boss and Rib Test)

  • 윤여웅;강성훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.332-337
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitative evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and friction condition on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the heights of the boss and rib. In addition, the effect of flow stress was also investigated on the deformation patterns through FE simulations.

  • PDF

Determination of Thermal Contact Conductance of an Injection Mold Assembly for the Prediction of Mold Surface Temperature

  • Lee, Ki-Yeon;Kim, Kyeong-Min;Park, Keun
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.1008-1012
    • /
    • 2012
  • Injection molds are fabricated by assembling a number of plates in which mold core and cavity components are inserted. The assembled structure causes a number of contact interfaces between each component where the heat transfer is affected by the thermal contact resistance. However, the mold assembly has been treated as a one body in numerical analyses of injection molding, which has a limitation in predicting the mold temperature distribution during the molding cycle. In this study, a numerical approach that considers the thermal contact effect is proposed to predict the heat transfer characteristics of an injection mold assembly. To find the thermal contact conductance between the mold core and plate, a number of finite element (FE) simulations were performed with the design of experiment (DOE) and statistical analysis. Thus, the heat transfer analyses using the obtained conductance values can provide more reliable results than conventional one-body simulations.

Simulations of spacing of localized zones in reinforced concrete beams using elasto-plasticity and damage mechanics with non-local softening

  • Marzec, I.;Bobinski, J.;Tejchman, J
    • Computers and Concrete
    • /
    • 제4권5호
    • /
    • pp.377-402
    • /
    • 2007
  • The paper presents quasi-static plane strain FE-simulations of strain localization in reinforced concrete beams without stirrups. The material was modeled with two different isotropic continuum crack models: an elasto-plastic and a damage one. In case of elasto-plasticity, linear Drucker-Prager criterion with a non-associated flow rule was defined in the compressive regime and a Rankine criterion with an associated flow rule was adopted in the tensile regime. In the case of a damage model, the degradation of the material due to micro-cracking was described with a single scalar damage parameter. To ensure the mesh-independence and to capture size effects, both criteria were enhanced in a softening regime by nonlocal terms. Thus, a characteristic length of micro-structure was included. The effect of a characteristic length, reinforcement ratio, bond-slip stiffness, fracture energy and beam size on strain localization was investigated. The numerical results with reinforced concrete beams were quantitatively compared with corresponding laboratory tests by Walraven (1978).