• Title/Summary/Keyword: FE modeling

Search Result 433, Processing Time 0.032 seconds

New Fuzzy Modeling Method by Fuzzy Equalization (퍼지 균등화에 의한 새로운 퍼지 모델링 방법)

  • Kwak, K.C.;Shin, D.C.;Song, C.K.;Kim, J.S.;Ryu, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.957-959
    • /
    • 1999
  • In this paper we proposed a new fuzzy modeling method by Fuzzy Equalization(FE) based on probability theory. FE concerns a process of building membership function without learning using back-propagation of neural network. Therefore, we compare the proposed method with Adaptive Network-based Inference System based on hybrid learning. Finally, we will show better performance and its usefulness for a new fuzzy modeling to automobile mpg prediction.

  • PDF

Fuzzy Modeling Using Fuzzy Equalization and GA (퍼지 균등화와 유전알고리즘을 이용한 퍼지 모델링)

  • Kim, S.S.;Go, H.J.;Jun, B.S.;Ryu, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2653-2655
    • /
    • 2001
  • In this paper, we proposed a method of modeling a system using Fuzzy Equalization(FE) and Genetic Algorithm(GA). The initial model is constructed using FE. The antecedent parameters and the rules in fuzzy logic are tuned by GA. The proposed system minimizes the modeling error and the size of structure. The process of building membership functions using PDF(Probability Density Function) and GA tunes the antecedent parameter and rules for minimizing the error and structure. The usefulness of proposed method is demonstrated by applying to Box-Jenkins furnace data.

  • PDF

Finite element model updating - Case study of a rail damper

  • Kuchak, Alireza Jahan Tigh;Marinkovic, Dragan;Zehn, Manfred
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.27-35
    • /
    • 2020
  • In rail industry, noise reduction is a concern to decrease environmental pollution. The current study focuses on rail damper modeling and improvement of the model through validation with experimental results. Accurate modeling and simulation of rail dampers, specifically tuned rail dampers with layers interconnected by bolt joints, shall enable objective-oriented improvement of their design. In this work, to improve the damper model cone pressure theory is applied in the FE model and the sensitivity analysis is then applied to gradually improve the FE model. The improved model yields higher Modal Assurance Criterion (MAC) values and lower frequencies deviation.

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

Development of a Framework for Improving Efficiency of Ship Vibration Analysis (선박 전선 진동해석 효율성 향상을 위한 프레임워크 개발)

  • Cho, Dae-Seung;Kim, Jin-Hyeong;Choi, Tae-Muk;Kim, Kyung-Soo;Choi, Sung-Won;Jung, Tae-Seok;Lee, Do-Kyung;Seok, Ho-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.761-767
    • /
    • 2011
  • Free and forced vibration analysis of the global ship structure using the 3-dimensional finite element(FE) method requires not only the specialized knowledge such as ship structure interacted with fluid, damping and various excitations due to propulsion system but also time-consuming manual tasks in FE modeling, analysis and response evaluation. As a result, the quality of the vibration analysis highly depends on engineer's expertise and experience. In this study, a framework system to improve the efficiency of global ship vibration analysis is introduced. The system promising the utilization of MSC/Patran and MSC/Nastran consists of various modules to support data management, FE modeling of ship structure and loading, input deck generation for free and forced vibration analysis, data extraction and evaluation of analysis results, and databases for FE models of marine diesel engines and vibration criteria. The system may be useful for pursuing standardization of uncertain analysis factors as well as reducing time, cost and human dependency in ship vibration analysis.

Development of a Framework for Improving Efficiency of Ship Vibration Analysis (선박 전선 진동해석 효율성 향상을 위한 프레임워크 개발)

  • Cho, Dae-Seung;Kim, Jin-Hyeong;Choi, Tae-Muk;Kim, Kyung-Soo;Choi, Sung-Won;Jung, Tae-Seok;Lee, Do-Kyung;Seok, Ho-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.779-784
    • /
    • 2011
  • Free and forced vibration analysis of the global ship structure using the 3-dimensional finite element(FE) method requires not only the specialized knowledge such as ship structure interacted with fluid, damping and various excitations due to propulsion system but also time-consuming manual tasks in FE modeling, analysis and response evaluation. As a result, the quality of the vibration analysis highly depends on engineer's expertise and experience. In this study, a framework system to improve the efficiency of global ship vibration analysis is introduced. The system promising the utilization of MSC/Patran and MSC/Nastran consists of various modules to support data management, FE modeling of ship structure and loading, input deck generation for free and forced vibration analysis, data extraction and evaluation of analysis results, and databases for FE models of marine diesel engines and vibration criteria. The system may be useful for pursuing standardization of uncertain analysis factors as well as reducing time, cost and human dependency in ship vibration analysis.

  • PDF

Study of Tube Expansion to Produce Hair-Pin Type Heat Exchanger Tubes using the Finite Element Method (유한요소법을 이용한 헤어핀 형 열 교환기의 튜브 확관에 대한 연구)

  • Hong, S.;Hyun, H.;Hwang, J.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.164-170
    • /
    • 2014
  • To predict the deformation and fracture during tube expansion using the finite element (FE) method, a material model is considered that incorporates the damage evolution due to the deformation. In the current study, a Rice-Tracey model was used as the damage model with inclusion of the hydrostatic stress term. Since OFHC Cu is not significantly affected by strain rate, a Hollomon flow stress model was used. The material parameters in each model were obtained by using an optimization method. The objective function was defined as the difference between the experimental measurements and FE simulation results. The parameters were determined by minimizing the objective function. To verify the validity of the FE modeling, cross-verification was conducted through a tube expansion test. The simulation results show reasonable agreement with the experiments. The design for a minimum diameter of expansion tube using the FE modeling was verified by a simplified tube expansion test and simulation results.

INFRARED [FE II] EMISSION LINES FROM RADIATIVE ATOMIC SHOCKS

  • KOO, BON-CHUL;RAYMOND, JOHN C.;KIM, HYUN-JEONG
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.3
    • /
    • pp.109-122
    • /
    • 2016
  • [Fe II] emission lines are prominent in the infrared (IR) and important as diagnostic tools for radiative atomic shocks. We investigate the emission characteristics of [Fe II] lines using a shock code developed by Raymond (1979) with updated atomic parameters. We first review general characteristics of the IR [Fe II] emission lines from shocked gas, and derive their fluxes as a function of shock speed and ambient density. We have compiled available IR [Fe II] line observations of interstellar shocks and compare them to the ratios predicted from our model. The sample includes both young and old supernova remnants in the Galaxy and the Large Magellanic Cloud and several Herbig-Haro objects. We find that the observed ratios of the IR [Fe II] lines generally fall on our grid of shock models, but the ratios of some mid-IR lines, e.g., [Fe II] 35.35 µm/[Fe II] 25.99 µm, [Fe II] 5.340 µm/[Fe II] 25.99 µm, and [Fe II] 5.340 µm/[Fe II] 17.94 µm, are significantly offset from our model grid. We discuss possible explanations and conclude that while uncertainties in the shock modeling and the observations certainly exist, the uncertainty in atomic rates appears to be the major source of discrepancy.

The effect of Fe2O3 nanoparticles instead cement on the stability of fluid-conveying concrete pipes based on exact solution

  • Nouri, Alireza Zamani
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • This paper deals with the stability analysis of concrete pipes mixed with nanoparticles conveying fluid. Instead of cement, the $Fe_2O_3$ nanoparticles are used in construction of the concrete pipe. The Navier-Stokes equations are used for obtaining the radial force of the fluid. Mori-Tanaka model is used for calculating the effective material properties of the concrete $pipe-Fe_2O_3$ nanoparticles considering the agglomeration of the nanoparticles. The first order shear deformation theory (FSDT) is used for mathematical modeling of the structure. The motion equations are derived based on energy method and Hamilton's principal. An exact solution is used for stability analysis of the structure. The effects of fluid, volume percent and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field and geometrical parameters of pipe are shown on the stability behaviour of system. Results show that considering the agglomeration of $Fe_2O_3$ nanoparticles, the critical fluid velocity of the concrete pipe is decreased.

Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber

  • Karimi, Amirhossein;Nematzadeh, Mahdi;Mohammad-Ebrahimzadeh-Sepasgozar, Saleh
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.467-482
    • /
    • 2020
  • This research focused on analyzing the post-fire behavior of high-performance concrete-filled steel tube (CFST) columns, with the concrete containing tire rubber and steel fibers, under axial compressive loading. The finite element (FE) modeling of such heated columns containing recycled aggregate is a branch of this field which has not received the proper attention of researchers. Better understanding the post-fire behavior of these columns by measuring their residual strength and deformation is critical for achieving the minimum repair level required for structures damaged in the fire. Therefore, to develop this model, 19 groups of confined and unconfined specimens with the variables including the volume ratio of steel fibers, tire rubber content, diameter-to-thickness (D/t) ratio of the steel tube, and exposure temperature were considered. The ABAQUS software was employed to model the tested specimens so that the accurate behavior of the FE-modeled specimens could be examined under test conditions. To achieve desirable results for the modeling of the specimens, in addition to the novel procedure described in this research, the modified versions of models presented by previous researchers were also utilized. After the completion of modeling, the load-axial strain and load-lateral strain relationships, ultimate strength, and failure mode of the modeled CFST specimens were evaluated against the test data, through which the satisfactory accuracy of this modeling procedure was established. Afterward, using a parametric study, the effect of factors such as the concrete core strength at different temperatures and the D/t ratio on the behavior of the CFST columns was explored. Finally, the compressive strength values obtained from the FE model were compared with the corresponding values predicted by various codes, the results of which indicated that most codes were conservative in terms of these predictions.