• 제목/요약/키워드: FE modeling

검색결과 433건 처리시간 0.026초

Modeling of nonlinear cyclic response of shear-deficient RC T-beams strengthened with side bonded CFRP fabric strips

  • Hawileh, Rami A.;Abdalla, Jamal A.;Tanarslan, Murat H.;Naser, Mohannad Z.
    • Computers and Concrete
    • /
    • 제8권2호
    • /
    • pp.193-206
    • /
    • 2011
  • The use of Carbon Fiber Reinforced Polymers (CFRP) to strengthen reinforced concrete beams under bending and shear has gained rapid growth in recent years. The performance of shear strengthened beams with externally bonded CFRP laminate or fabric strips is raising many concerns when the beam is loaded under cyclic loading. Such concerns warrant experimental, analytical and numerical investigation of such beams under cyclic loading. To date, limited investigations have been carried out to address this concern. This paper presents a numerical investigation by developing a nonlinear finite element (FE) model to study the response of a cantilever reinforced concrete T-beam strengthened in shear with side bonded CFRP fabric strips and subjected to cyclic loading. A detailed 3D nonlinear finite element model that takes into account the orthotropic nature of the polymer's fibers is developed. In order to simulate the bond between the CFRP sheets and concrete, a layer having the material properties of the adhesive epoxy resin is introduced in the model as an interface between the CFRP sheets and concrete surface. Appropriate numerical modeling strategies were used and the response envelope and the load-displacement hysteresis loops of the FE model were compared with the experimental response at all stages of the cyclic loading. It is observed that the responses of the FE beam model are in good agreement with those of the experimental test. A parametric study was conducted using the validated FE model to investigate the effect of spacing between CFRP sheets, number of CFRP layers, and fiber orientation on the overall performance of the T-beam. It is concluded that successful FE modeling provides a practical and economical tool to investigate the behavior of such strengthened beams when subjected to cyclic loading.

Dynamic Modeling and Model Reduction for a Large Marine Engine

  • Kim, Chae-Sil;Jung, Jong-Ha;Park, Hyung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.520-525
    • /
    • 2003
  • This article provides a dynamic modeling methodology of engines to be accurate with a small number of degrees of freedom for an active vibration control using a top bracing. First. a finite element (FE) model for the engine structure is constructed so that the size of model is as small as possible where the dynamic characteristics of engine are ensured. Second. a technique is studied to obtain the exact mass and stiffness matrices of the FE model. The size of matrices from the FE model is still too large to apply. Finally, a model reduction is. therefore. conducted to make an appropriate dynamic model for designing and simulating a top bracing. In this article, a dynamic model of a large 9 cylinder engine is constructed and reviewed by comparing its natural frequencies and steady state reponses with those of experimental data provided by manufacturer.

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

Nonlinear structural finite element model updating with a focus on model uncertainty

  • Mehrdad, Ebrahimi;Reza Karami, Mohammadi;Elnaz, Nobahar;Ehsan Noroozinejad, Farsangi
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.549-580
    • /
    • 2022
  • This paper assesses the influences of modeling assumptions and uncertainties on the performance of the non-linear finite element (FE) model updating procedure and model clustering method. The results of a shaking table test on a four-story steel moment-resisting frame are employed for both calibrations and clustering of the FE models. In the first part, simple to detailed non-linear FE models of the test frame is calibrated to minimize the difference between the various data features of the models and the structure. To investigate the effect of the specified data feature, four of which include the acceleration, displacement, hysteretic energy, and instantaneous features of responses, have been considered. In the last part of the work, a model-based clustering approach to group models of a four-story frame with similar behavior is introduced to detect abnormal ones. The approach is a composition of property derivation, outlier removal based on k-Nearest neighbors, and a K-means clustering approach using specified data features. The clustering results showed correlations among similar models. Moreover, it also helped to detect the best strategy for modeling different structural components.

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

  • Hong, Danbi;Park, Kook Jin;Kim, Seung Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.370-379
    • /
    • 2015
  • Handling constantly evolving configurations of aircraft can be inefficient and frustrating to design engineers, especially true in the early design phase when many design parameters are changeable throughout trade-off studies. In this paper, a physics-based design framework using parametric modeling is introduced, which is designated as DIAMOND/AIRCRAFT and developed for structural design of transport aircraft in the conceptual and preliminary design phase. DIAMOND/AIRCRAFT can relieve the burden of labor-intensive and time-consuming configuration changes with powerful parametric modeling techniques that can manipulate ever-changing geometric parameters for external layout of design alternatives. Furthermore, the design framework is capable of generating FE model in an automated fashion based on the internal structural layout, basically a set of design parameters describing the structural members in terms of their physical properties such as location, spacing and quantities. The design framework performs structural sizing using the FE model including both primary and secondary structural levels. This physics-based approach improves the accuracy of weight estimation significantly as compared with empirical methods. In this study, combining a physics-based model with parameter modeling techniques delivers a high-fidelity design framework, remarkably expediting otherwise slow and tedious design process of the early design phase.

Finite element modeling methodologies for FRP strengthened RC members

  • Park, Sangdon;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • 제2권5호
    • /
    • pp.389-409
    • /
    • 2005
  • The Finite Element Analysis (FEA) is evidently a powerful tool for the analysis of structural concrete having nonlinearity and brittle failure properties. However, the result of FEA of structural concrete is sensitive to two modeling factors: the shear transfer coefficient (STC) for an open concrete crack and force convergence tolerance value (CONVTOL). Very limited work has been done to find the optimal FE Modeling (FEM) methodologies for structural concrete members strengthened with externally bonded FRP sheets. A total of 22 experimental deep beams with or without FRP flexure or/and shear strengthening systems are analyzed by nonlinear FEA using ANAYS program. For each experimental beams, an FE model with a total of 16 cases of modeling factor combinations are developed and analyzed to find the optimal FEM methodology. Two elements the SHELL63 and SOLID46 representing the material properties of FRP laminate are investigated and compared. The results of this research suggest that the optimal combination of modeling factor is STC of 0.25 and CONVTOL of 0.2. A SOLID 46 element representing the FRP strengthening system leads to better results than a SHELL 63 element does.

Investigation of bond-slip modeling methods used in FE analysis of RC members

  • Demir, Serhat;Husem, Metin
    • Structural Engineering and Mechanics
    • /
    • 제56권2호
    • /
    • pp.275-291
    • /
    • 2015
  • Adherence between reinforcement and the surrounding concrete is usually ignored in finite element analysis (FEA) of reinforced concrete (RC) members. However, load transition between the reinforcement and surrounding concrete effects RC members' behavior a great deal. In this study, the effects of bond-slip on the FEA of RC members are examined. In the analyses, three types of bond-slip modeling methods (perfect bond, contact elements and spring elements) and three types of reinforcement modeling methods (smeared, one dimensional line and three dimensional solid elements) were used. Bond-slip behavior between the reinforcement and surrounding concrete was simulated with cohesive zone materials (CZM) for the first time. The bond-slip relationship was identified experimentally using a beam bending test as suggested by RILEM. The results obtained from FEA were compared with the results of four RC beams that were tested experimentally. Results showed that, in FE analyses, because of the perfect bond occurrence between the reinforcement and surrounding concrete, unrealistic strains occurred in the longitudinal reinforcement. This situation greatly affected the load deflection relationship because the longitudinal reinforcements dominated the failure mode. In addition to the spring elements, the combination of a bonded contact option with CZM also gave closer results to the experimental models. However, modeling of the bond-slip relationship with a contact element was quite difficult and time consuming. Therefore bond-slip modeling is more suitable with spring elements.

Stress-Pore Pressure Coupled Finite Element Modeling of NATM Tunneling (NATM 터널의 응력-간극수압 연계 유한요소모델링)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • 제22권10호
    • /
    • pp.5-20
    • /
    • 2006
  • This paper concerns the finite element (FE) modeling approach for NATM tunneling in water bearing ground within the framework of stress-pore pressure coupled analysis. Fundamental interaction mechanism of ground and groundwater lowering was first examined and a number of influencing factors on the results of coupled FE analysis were identified. A parametric study was then conducted on the influencing factors such as soil-water characteristics, location of hydraulic boundary conditions, the way of modeling drainage flow, among others. The results indicate that the soil-water characteristics play the most important role in the tunneling-induced settlement characteristics. Based on the results, modeling guidelines were suggested for stress-pore pressure coupled finite element modeling of NATM tunneling.

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • 제8권2호
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Three-dimensional Electromagnetic Modeling in Frequency Domain (주파수영역 전자법의 3차원 모델링)

  • Jang, Hannuree;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • 제17권3호
    • /
    • pp.163-170
    • /
    • 2014
  • Development of a modeling technique for accurately interpreting electromagnetic (EM) data is increasingly required. We introduce finite difference (FD) and finite-element (FE) methods for three-dimensional (3D) frequency-domain EM modeling. In the controlled-source EM methods, formulating the governing equations into a secondary electric field enables us to avoid a singularity problem at the source point. The secondary electric field is discretized using the FD or FE methods for the model region. We represent iterative and direct methods to solve the system of equations resulting from the FD or FE schemes. By applying the static divergence correction in the iterative method, the rate of convergence is dramatically improved, and it is particularly useful to compute a model including surface topography in the FD method. Finally, as an example of an airborne EM survey, we present 3D modeling using the FD method.