• 제목/요약/키워드: FE investigation

검색결과 527건 처리시간 0.034초

Superconducting critical temperature in FeN-based superconductor/ferromagnet bilayers

  • Hwang, T.J.;Kim, D.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.5-7
    • /
    • 2016
  • We present an experimental investigation of the superconducting transition temperatures, $T_c$, of superconductor/ferromagnet bilayers with varying the thickness of ferromagnetic layer. FeN was used for the ferromagnetic (F) layer, and NbN and Nb were used for the superconducting (S) layer. The results were obtained using three different-thickness series of the S layer of the S/F bilayers: NbN/FeN with NbN thickness, $d_{NbN}{\approx}9.3nm$ and $d_{NbN}{\approx}10nm$, and Nb/FeN with Nb thickness $d_{Nb}{\approx}15nm$. $T_c$ drops sharply with increasing thickness of the ferromagnetic layer, $d_{FeN}$, before maximal suppression of superconductivity at $d_{FeN}{\approx}6.3nm$ for $d_{NbN}{\approx}10nm$ and at $d_{FeN}{\approx}2.5nm$ for $d_{Nb}{\approx}15nm$, respectively. After shallow minimum of $T_c$, a weak $T_c$ oscillation was observed in NbN/FeN bilayers, but it was hardly observable in Nb/FeN bilayers.

Microstructural Characterization of Gas Atomized Copper-Iron Alloys with Composition and Powder Size

  • Abbas, Sardar Farhat;Kim, Taek-Soo
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.19-24
    • /
    • 2018
  • Cu-Fe alloys (CFAs) are much anticipated for use in electrical contacts, magnetic recorders, and sensors. The low cost of Fe has inspired the investigation of these alloys as possible replacements for high-cost Cu-Nb and Cu-Ag alloys. Here, alloys of Cu and Fe having compositions of $Cu_{100-x}Fe_x$ (x = 10, 30, and 50 wt.%) are prepared by gas atomization and characterized microstructurally and structurally based on composition and powder size with scanning electron microscopy (SEM) and X-ray diffraction (XRD). Grain sizes and Fe-rich particle sizes are measured and relationships among composition, powder size, and grain size are established. Same-sized powders of different compositions yield different microstructures, as do differently sized powders of equal composition. No atomic-level alloying is observed in the CFAs under the experimental conditions.

분자 동역학 모사를 이용한 Fe(100) 표면의 스퍼터링 해석 (Sputtering of Fe(100) Substrate Due to Energetic Ion Bombardments: Investigation with Molecular Dynamics Simulations)

  • 김동호
    • 한국표면공학회지
    • /
    • 제39권2호
    • /
    • pp.76-81
    • /
    • 2006
  • Molecular dynamics simulations were carried out to investigate physical sputtering of Fe(100) substrate due to energetic ion bombardments. Repulsive interatomic potentials at short internuclear distances were determined with ab initio calculations using the density functional theory. Bohr potentials were fitted to the ab initio results on diatomic pairs (Ar-Fe, Fe-Fe) and used as repulsive screened Coulombic potentials in sputtering simulations. The fitted-Bohr potentials improve the accuracy of the sputtering yields predicted by molecular dynamics for sputtering of Fe(100), whereas Moliere and ZBL potentials were found to be too repulsive and gave relatively high sputtering yields. In spite of assumptions and limitations in this simulation work, the sputtering yields predicted by the molecular dynamics method were in fairly good accordance with the obtainable experimental data in absolute values as well as in manner of the variation according to the Incident energy. Threshold energy for sputtering of Fe(100) substrate was found to be about 40 eV. Additionally, distributions of kinetic energies of sputtered atoms and their original depths could be obtained.

A Comparative Study of the Degradation of the Erionyl Navy R by Different Oxidation Processes: Chemical, Fenton and Fenton-like

  • Belaid, Kumar Djamal;Elhorri, Abdelkader M.;Mered, Yassine;Hichem, Ellali
    • 공업화학
    • /
    • 제33권4호
    • /
    • pp.419-424
    • /
    • 2022
  • The oxidative degradation performance of the Erionyl Navy R dye was studied in this article. The investigation mainly focused on a comparative study between chemical oxidations by sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2), and catalytic oxidations including the Fenton (Fe2+-H2O2) and Fenton-Like (Fe2+/ Fe3+/Co2+/ Mn2+-H2O2) or modified Fenton-like (Fe2+/ Fe3+ -NaClO) reactions. A discoloration and degradation of the Erionyl Navy R occurred after 30 minutes, which varies according to the oxidation system involved; 31%, 54%, <20%, 95%, and >96% losses were observed for Co2+-H2O2, Mn2+-H2O2, Fe2+-NaClO, Fe3+-NaClO), and Fe2+-H2O2 and Fe3+-H2O2, respectively.

Synthesis of $TiO_2$ nantubes coupled with ${\alpha}-Fe_2O_3$ nanoparticles and investigation of their photoelectrochemical activity

  • Mao, Aiming;Park, Jong-Hyeok;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 2009
  • $TiO_2$ nanotube arraysdecorated with ${\alpha}-Fe_2O_3$ were prepared by forming a nanotube-like $TiO_2$ film on a Ti sheet using an anodization process, followed by electrochemical deposition treatment to decorate hematite (${\alpha}-Fe_2O_3$) nanoparticles on the $TiO_2$ nanotube arrays. The SEM and XRD results revealed that the ${\alpha}-Fe_2O_3$ nanoparticles were homogeneously embedded on the surface of the $TiO_2$ nanotube arrays. The activity of hydrogen production by photocatalytic water decomposition for the ${\alpha}-Fe_2O_3/TiO_2$ nanotube array composite was examined under visible light irradiation.

  • PDF

NiO Thickness Dependences of Perpendicular Magnetic Anisotropy in the [CoFe/Pt] Multilayers

  • Kim, S.W;Lee, J.Y;Lee, S.S;Hahn, E.J;Hwang, D.G
    • Journal of Magnetics
    • /
    • 제9권4호
    • /
    • pp.121-124
    • /
    • 2004
  • NiO thickness dependences of perpendicular magnetic anisotropy (PMA) in the $NiO/[CoFe/Pt]_5$ multilayers for exchange biasing and $[CoFe/Pt]_4/Pt/[CoFe/Pt]_4$ for interlayer exchange coupling were investigated. Perpendicular magnetization curve was obtained by out-of-plane extraordinary Hall measurement. Magnetic force microscopy (MFM) has been used for the investigation of magnetic domains on thin films. We confirmed that the interlayer exchange coupling (IEC) as a function of NiO thickness at room temperature existed with a period of two monolayers.

In situ Structural Investigation of Iron Phthalocyanine Monolayer Adsorbed on Electrode Surface by X-ray Absorption Fine Structure

  • 김성현;;강광훈
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권6호
    • /
    • pp.588-594
    • /
    • 2000
  • Structural changes of an iron phthalocyanine (FePC) monolayer induced by adsorption and externally applied potential on high area carbon surface have been investigated in situ by iron K-edge X-ray absorption fine structure (XAFS) in 0.5 M $H_2S0_4.$ Fine structures shown in the X-ray absorption near edge structure (XANES) for microcrystalline FePC decreased upon adsorption and further diminished under electrochemical conditions. Fe(II)PC(-2) showed a 1s ${\rightarrow}$ 4p transition as poorly resolved shoulder to the main absorption edge rather than a distinct peak and a weak 1s ${\rightarrow}$ 3d transition. The absorption edge position measured at half maximum was shifted from 7121.8 eV for Fe(lI)PC(-2) to 7124.8 eV for $[Fe(III)PC(-2)]^+$ as well as the 1s ${\rightarrow}$ 3d pre-edge peak being slightly enhanced. However, essentially no absorption edge shift was observed by the 1-electron reduction of Fe(Il)PC(-2), indicating that the species formed is $[Fe(II)PC(-3)]^-$. Structural parameters were obtained by analyzing extended X-ray absorption fine structure (EXAFS) oscillations with theoretical phases and amplitudes calculated from FEFF 6.01 using multiple-scattering theory. When applied to the powder FePC, the average iron-to-phthalocyanine nitrogen distance, d(Fe-$N_p$) and the coordination number were found to be 1.933 $\AA$ and 3.2, respectively, and these values are the same, within experimental error, as those reported ( $1.927\AA$ and 4). Virtually no structural changes were found upon adsorption except for the increased Debye-Wailer factor of $0.005\AA^2$ from $0.003\AA^2.$ Oxidation of Fe(II)PC(-2) to $[Fe(III)PC(-2)]^+$ yielded an increased d(Fe-Np) (1 $.98\AA)$ and Debye-Wailer factor $(0.005\AA^2).$ The formation of $[Fe(II)PC(-3)]^-$, however, produced a shorter d(Fe-$N_p$) of $1.91\AA$ the same as that of crystalline FePC within experimental error, and about the same DebyeWaller $factor(0.006\AA^2)$.

Modeling of nonlinear cyclic response of shear-deficient RC T-beams strengthened with side bonded CFRP fabric strips

  • Hawileh, Rami A.;Abdalla, Jamal A.;Tanarslan, Murat H.;Naser, Mohannad Z.
    • Computers and Concrete
    • /
    • 제8권2호
    • /
    • pp.193-206
    • /
    • 2011
  • The use of Carbon Fiber Reinforced Polymers (CFRP) to strengthen reinforced concrete beams under bending and shear has gained rapid growth in recent years. The performance of shear strengthened beams with externally bonded CFRP laminate or fabric strips is raising many concerns when the beam is loaded under cyclic loading. Such concerns warrant experimental, analytical and numerical investigation of such beams under cyclic loading. To date, limited investigations have been carried out to address this concern. This paper presents a numerical investigation by developing a nonlinear finite element (FE) model to study the response of a cantilever reinforced concrete T-beam strengthened in shear with side bonded CFRP fabric strips and subjected to cyclic loading. A detailed 3D nonlinear finite element model that takes into account the orthotropic nature of the polymer's fibers is developed. In order to simulate the bond between the CFRP sheets and concrete, a layer having the material properties of the adhesive epoxy resin is introduced in the model as an interface between the CFRP sheets and concrete surface. Appropriate numerical modeling strategies were used and the response envelope and the load-displacement hysteresis loops of the FE model were compared with the experimental response at all stages of the cyclic loading. It is observed that the responses of the FE beam model are in good agreement with those of the experimental test. A parametric study was conducted using the validated FE model to investigate the effect of spacing between CFRP sheets, number of CFRP layers, and fiber orientation on the overall performance of the T-beam. It is concluded that successful FE modeling provides a practical and economical tool to investigate the behavior of such strengthened beams when subjected to cyclic loading.

Systematic Investigation of the Effects of Macro-elements and Iron on Soybean Plant Response to Fusarium oxysporum Infection

  • Cai, Hongsheng;Tao, Nan;Guo, Changhong
    • The Plant Pathology Journal
    • /
    • 제36권5호
    • /
    • pp.398-405
    • /
    • 2020
  • Nutrient manipulation is a promising strategy for controlling plant diseases in sustainable agriculture. Although many studies have investigated the relationships between certain elements and plant diseases, few have comprehensively explored how differing mineral nutrition levels might affect plant-fungal pathogen interactions, namely plant susceptibility and resistance. Here, we systematically explored the effects of the seven mineral elements that plants require in the greatest amounts for normal development on the susceptibility of soybean plants (Glycine max) to Fusarium oxysporum infection in controlled greenhouse conditions. Nitrogen (N) negligibly affected plant susceptibility to infection in the range 4 to 24 mM for both tested soybean cultivars. At relatively high concentrations, phosphorus (P) increased plant susceptibility to infection, which led to severely reduced shoot and root dry weights. Potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), and iron (Fe) induced plant resistance to infection as their concentrations were increased. For K and Ca, moderate concentrations had a positive effect on plant resistance to the pathogen, whereas relatively high doses of either element adversely affected plant growth and promoted disease symptoms. Further experiments were conducted, assessing disease suppression by selected combinations of macro-elements and Fe at screened concentrations, i.e., K (9 mM) plus Fe (0.2 mM), and S (4 mM) plus Fe (0.2 mM). The disease index was significantly reduced by the combination of K plus Fe. In conclusion, this systematic investigation of soybean plant responses to F. oxysporum infection provides a solid basis for future environmentally-friendly choices for application in soybean disease control programs.

Experimental and numerical investigation into the damage response of composite sandwich panels to low-velocity impact

  • Feng, Dianshi;Aymerich, Francesco
    • Structural Monitoring and Maintenance
    • /
    • 제4권2호
    • /
    • pp.133-151
    • /
    • 2017
  • The paper describes the results of an experimental and numerical investigation into the structural and damage response of sandwich composites to low-velocity impact. Sandwich panels consisting of laminated composite skins with three different layups bonded to a PVC foam core were subjected to impact at various energy levels corresponding to barely visible impact damage (BVID) in the impacted skins. Damage assessment analyses were performed on the impacted panels to characterise the extent and the nature of the major failure mechanisms occurring in the skins. The data collected during the experimental analyses were finally used to assess the predictive capabilities of an FE tool recently developed by the authors for detailed simulation of impact damage in composite sandwich panels. Good agreement was observed between experimental results and model predictions in terms of structural response to impact, global extent of damage and typical features of individual damage mechanisms.