• Title/Summary/Keyword: FE crack analysis

Search Result 188, Processing Time 0.024 seconds

On Relevant Ramberg-Osgood Fit to Engineering Non-Linear Fracture Mechanics Analysis (정확한 비선형 파괴역학 해석을 위한 Ramberg-Osgood 상수 결정법)

  • Huh, Nam-Su;Kim, Yun-Jae;Choi, Young-Hwan;Yang, Jun-Seok;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1571-1578
    • /
    • 2003
  • This paper proposes a robust method for the Ramberg-Osgood(R-O)fit to accurately estimate elastic-plastic J from engineering fracture mechanics analysis based on deformation plasticity. The proposal is based on engineering stress-strain data to determine the R-O parameters, instead of true stress-strain data. Moreover, for practical applications, the method is given not only for the case when full stress-strain data are available but also for the case when only yield and tensile strengths are available. Reliability of the proposed method for the R-O fit is validated against detailed 3-D Finite Element (FE) analyses for circumferential through-wall cracked pipes under global bending using five different materials, three stainless steels and two ferritic steels. Taking the FE J results based on incremental plasticity using actual stress-strain data as reference, the FE J results based on deformation plasticity using various R-O fits are compared with reference J values. Comparisons show that the proposed R-O fit provides more accurate J values for all cases, compared to existing methods for the R-O fit. Advantages of the proposed R-O fit in practical applications are discussed, together with its accuracy.

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.

Safety Estimation of the Carbon/Carbon Brake Disk Having Crack by Experimental/Analytical Method (크랙이 존재하는 탄소/탄소 브레이크 디스크의 실험적/해석적 안정성 판별)

  • 오세희;유재석;김천곤;홍창선;박종현
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.24-31
    • /
    • 2002
  • In this paper, the safety of the crack existing between the load bearing part and the friction part in key slots was evaluated. The repetitive loading test considered impact damage was performed for the various crack models. Also, the probability of the crack propagation and the stress concentration at the crack tip were studied by using a FE analysis. By these method, safety of the disk was confirmed.

Crack driving force prediction based on finite element analysis using standard models

  • Brnic, Josip;Vukelic, Goran;Turkalj, Goran
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.601-609
    • /
    • 2012
  • Effect of different crack sizes on fracture criterion of some engineering materials was investigated in this work. Using finite element (FE) method coupled with a newly developed algorithm, J-integral values for different crack sizes were obtained for single-edge notched bend (SENB) and compact type (CT) specimen. Specimens with initial a/W ratio from 0.25 to 0.75 varying in crack size in steps of 0.125 were investigated. Several different materials, like 20MnMoNi55, 42CrMo4 and 50CrMo4, usually used in engineering structure, were investigated. For one of mentioned materials, numerical results were compared with experimental and their compatibility is visible.

Finite Element Analysis for Fracture Resistance of Fiber-reinforced Asphalt Concrete (유한요소해석을 통한 섬유보강 아스팔트의 파괴거동특성 분석)

  • Baek, Jongeun;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.77-83
    • /
    • 2015
  • PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions. METHODS : A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated. RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly. CONCLUSIONS : The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

Fully Plastic Analyses of Unequally Notched Specimens in Bending Moment (굽힘 하중이 작용하는 비대칭노치시편의 완전소성해석)

  • Oh Chang-Kyun;Park Jin-Moo;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.269-278
    • /
    • 2006
  • This paper proposes slip line fields for bending of unequally notched specimens in plane strain that have a sharp crack in one side and a sharp V-notch in the other side. Depending on the back angle, two slip line fields are proposed, from which the limit moment and crack tip stress fields are obtained as a function of the back angle. Excellent agreement between slip line field solutions with those from detailed finite element limit analysis based on non-hardening plasticity provides confidence in the proposed slip line fields. One interesting point is that, for the unequally notched specimen, the difference between the crack tip triaxial stress for tension and that for bending increases significantly with increasing the back angle. This suggests that such a specimen could be potentially useful to investigate the crack tip constraint effect on fracture toughness of materials. In this respect, the possibility of designing a new toughness testing specimen with varying crack tip constraint is discussed.

Criterion for ductile crack initiation with strength mismatch under dynamic loading (강도적 불균질을 갖는 구조물의 동적하중하에서의 연성크랙 발생조건)

  • 안규백;일본명;일본명;방한서;일본명
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.179-181
    • /
    • 2003
  • The present study focuses on the effect of geometrical discontinuity, strength mismatch, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on the ductile crack initiation using two-parameter criterion. Fracture initiation testing has been conducted under static and dynamic loading using circumferentially notched round-bar specimens. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal elastic-plastic dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out.

  • PDF

The Analysis of Fatigue Crack Initiation and Microstructure of Plasma Ion Nitrided SACM645 Steel (플라즈마 이온질화한 SACM645 강의 미세조직 및 피로균열 발생의 해석)

  • Kim, K.T.;Kwum, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.69-77
    • /
    • 1996
  • The fatigue crack initiation behavior of plasma ion nitrided SACM645 steel was investigated through the rotary bending fatigue test and residual stress measurement by XRD. It was shown by XRD and EPMA that the plasma ion nitrided surface was composed of ${\gamma}^{\prime}(Fe_4N)$phase and ${\varepsilon}(Fe_{2-3}N)$phase, and that the nitrogen atoms existed in Fe matrix in diffusion layer. The OM, SEM and Auger spectroscopy showed that the depth of compound layer, mixed compound and diffusion layer, and diffusion layer was $8{\mu}m$, $30{\mu}m$ and $300{\mu}m$, respectively. However, the microhardness test showed that the depth of hardened layer was $500{\mu}m$. The tensile strength of the ion nitrided SACM645 was lower than that of the unnitrided SACM645, and the ion nitrided specimen was fractured without plastic deformation. The nitrided SACM645 showed much poorer low cycle fatigue properties than the unnitrided one. In rotary bending fatigue, the fatigue strength of the ion nitrided SACM645 was higher than that of the unnitrided specimen, and the fatigue crack initiation sites changed by applied fatigue stress levels. The XRD result showed that the ion nitrided SACM645 has the compressive residual stress from surface to $600{\mu}m$ deep and the tensile residual stress from $600{\mu}m$ to deeper site. It is thought that crack initiation takes place at the point where the total stress of residual stress and applied stress is maximum.

  • PDF

Dependence of fatigue crack propagation behavior on the microstructure in SM45c steel (SM45C강의 피로균열 성장에 미치는 미세조직의 영향)

  • 김현철;임병수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.103-111
    • /
    • 1991
  • To determine the effects of microstructure on the fatigue crack propagation behavior in SM45C steel, experimental investigations have been carried out with the specimens of different grain sizes and different spacings between the Fe$_{3}$C particles. Fatigue and tensile tests were conducted and the quantitative analysis of the relations between the threshold stress intensity range and grain size, interparticle spacing and yield stress were carried out. Some of the conclusions obtained are as follows; (1) .DELTA.K$_{th}$ was observed to increase with grain size and the spacing between the Fe3C particles. (2) In both pearlite and spheroidite microstructures, .DELTA.K$_{th}$ was increased when yield stress was decreased.sed.

  • PDF