• 제목/요약/키워드: FE calculation

검색결과 222건 처리시간 0.021초

Ni/Fe(001)의 자성과 자기이방성에 대한 제일원리계산 (Magnetism and Magnetocrystalline Anisotropy of Ni/Fe(001) Surface: A First Principles Study)

  • 권오룡;홍순철
    • 한국자기학회지
    • /
    • 제25권4호
    • /
    • pp.101-105
    • /
    • 2015
  • 희토류 금속이나 4d/5d 전이금속을 포함하지 않은 3d 전이금속 Fe와 Ni 원소만을 적절하게 배열해도 강한 수직 자기이방성을 가질 수 있음을 예측한 이론 계산 결과가 최근 보고된 바 있다. 그 계산에서는 Fe 층을 표면으로 하는 계만을 고려하였는데 본 논문에서는 Ni가 표면일 때의 자기이방성 에너지를 제일원리계산 방법으로 계산하여 자기이방성을 조절할 수 있는 방안이 있을 수 있는지를 알아 보았다. Fe(001) 표면에 Ni 원소 한 층이 덮였을 때[Ni/Fe(001)]의 자성과 자기이방성을 제일원리계산 방법으로 VASP과 FLAPW 방법을 상호 보완적으로 사용하면서 계산 결과를 비교해 보았다. VASP에 의한 결과는 FLAPW 방법으로 얻은 결과와 큰 차이가 없었고, Fe와 Ni의 강한 띠 혼합으로 Fe와 Ni의 자기모멘트가 모두 증가하였으며 Ni/Fe(001)은 수평 자기이방성을 가지는 것으로 계산되었다. 원자 별 자기이방성 기여도 계산에 의하면 자기이방성에 결정적인 역할을 하는 것은 Ni표면 층임을 알 수 있었다.

보배광산에서 산출하는 열수변질 기원 녹염석의 분광학적 특성: 적외선 및 뫼스바우어 연구 (FTIR and M ssbauer Spectroscopic Studies on the Hydrothermal Epidote from the Bobae Clay Deposit, Pusan, Korea)

  • 추창오;김수진
    • 한국광물학회지
    • /
    • 제9권2호
    • /
    • pp.55-63
    • /
    • 1996
  • Epidote occurs as veinlets in the propylitic alteration zone of the Bobae clay deposit, Pusan, Korea. Its cell parameters apparently decrease with the contents of Al, Fe, and Ca. Fourier transform infrared (FTIR) spectra show one hydrosyl environment related to AlM2 at 3357-3358 cm-1. In the mid-infrared region, the peaks at 950 and 1030 cm-1 sharper with increasing Al shifting to higher energy region. The peak at 885 cm-1 shifts slightly to a lower energy region with a decreasing intensity as the Fe content increases. In the far-IR region, epidote exhibits absorption bands at 120 and 140 cm-1, which are related to the Ca-O bonds in A-sites.M ssbauer spectra of epidote show that the isomer shifts of Fe3+ range from 0.36-0.37 at the M3 site and from 0.35-0.44 at M1 site. Fe2+ shows the isomer shift ranging from 1.11 to 1.13. Quadrupole splitting is 2.04 for Fe3+M3, 0.52-0.70 for Fe3+M1, and 2.61-2.70 for Fe2+M3. Calculation shows Fe3+M386-90.7%, Fe3+M12.5-3.6%, and Fe2+M35.8-11.4% of total iron, showing preferential distribution of Fe3+ in the M3 site. The Fe3+M3 content is between 0.486 and 0.513 per formula unit. in the Fe-rich epidote, less Fe3+ and more Fe2+ are accommodated in the M1 and M3 sites. Hence, the overall disorder increases as total Fe content increase. The ordering parameter of the Bobae epidote is 0.93-0.95, suggesting a disequilibrium state below 200$^{\circ}C$. The constant temperature over a long period may be essential for the transition from disordered state to equilibrium state, despite the possible variation in flux and composition of the hydrothermal fluid.

  • PDF

Ti-10V-2Fe-3Al 합금의 응력-변형거동 계산 (The calculation of stress-strain behavior of Ti-10V-2Fe-3Al alloys)

  • 오택열
    • 오토저널
    • /
    • 제11권6호
    • /
    • pp.38-47
    • /
    • 1989
  • The Finite Element Method has been employed to calculate the effect of particle size, matrix, and volume fractions on the stress-strain relations of .alpha.-.betha. titanium alloys. It was found that for a given volume fraction, the calculated stress-strain curve was higher for a finer particle size than for a coarse particle size within the range of the strains considered, and this behavior was seen for all the different volume fraction alloys considered. The calculated stress-strain curves for three vol. pct .alpha. alloys were compared with their corresponding experimental curve, and in general, good agreement was found.

  • PDF

천이금속 첨가에 따른 이산화망간의 전기전도도 변화 (Electrical Conductivity Change of Manganese oxide with Addition of Transition Metal)

  • 김봉서;이동윤;이희웅;정원섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2028-2030
    • /
    • 2005
  • The electrical conductivity of manganese oxide and complex manganese oxide produced by anodic deposition method was measured. The additive transition metal is Cu, Co and Fe. The transition metals like as Cu, Co and Fe improved electrical conductivity of complex manganese oxide compared with manganese oxide. This is coincide with the results of molecular orbital calculation by DV-Xa.

  • PDF

전이금속 Fe-Pt 나노선의 자기적 성질 (Magnetic Properties of Fe-Pt Nanowires with Linear and Zigzag Structures)

  • 장영록;조철수;이재일
    • 한국자기학회지
    • /
    • 제15권6호
    • /
    • pp.299-302
    • /
    • 2005
  • 전이금속 Fe-Pt 나노선의 자기적 성질을 수도퍼텐셜 및 전전자(all-electron) 제일원리 전자구조 계산 방법으로 연구하였다. 직선 구조와 지그재그 구조에 대해서 결합에너지를 계산함으로써 안정된 구조를 결정했고, 결합거리, 결합각도, 자기모멘트, 스핀밀도, 상태밀도 등을 계산함으로써 전이금속 나노선의 구조적 성질과 자기적 성질을 연구하였다. Fe-Pt 나노선의 경우에 지그재그 구조가 직선 구조보다 더 안정된 것으로 계산되었고, 직선 구조에 비해서 결합길이는 증가하지만 자기모멘트는 감소하였다.

Fe-Mn 합금의 γ→ε 마르텐사이트변태에 필요한 구동력 (Driving Forces for γ→ε Martensitic Transformation of Fe-Mn Alloys)

  • 이영국;최종술
    • 열처리공학회지
    • /
    • 제9권4호
    • /
    • pp.243-251
    • /
    • 1996
  • Dilatometric experiment and thermodynamic calculation have been performed to determine $M_s$, $A_s$ and driving forces for ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation of Fe-Mn alloys. The transformation temperatures($M_s$, $A_s$, $T_o) were decreased with increasing manganese content and were newly formulated as a function of manganese content. Driving force for ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation was increased from -75J/mole to -105J/mole with increasing manganese content from 15wt.% to 25wt.%. Transformation temperature hysteresis($A_s-M_s$) was also increased from 50K to 80K with increasing mangenese content from 15wt.% to 25wt.%. The small driving force(-75J/mole~-105J/mole) and small ${\Delta}T$(50K~80K) for ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation indicated that Fe-Mn alloys behave like thermoelastic martensitic alloys : We would like to call them semi-thermoelastic martensitic alloys.

  • PDF

FE validation of the equivalent diameter calculation model for grouped headed studs

  • Spremic, Milan;Pavlovic, Marko;Markovic, Zlatko;Veljkovic, Milan;Budjevac, Dragan
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.375-386
    • /
    • 2018
  • Existing design codes for steel-concrete composite structures give only general information about the shear connection provided by headed studs in group arrangement. Grouting of the openings in prefabricated concrete slabs, where the grouped headed studs are placed in the deck pockets is alternative to cast-in-place decks to accomplish fast execution of composite structures. This paper considers the possibility to reduce the distance between the studs within the group, bellow the Eurocode limitations. This may lead to increased competitiveness of the prefabricated construction because more studs are placed in the group if negative effectives of smaller distances between studs are limited. The main purpose of this work is to investigate these limits and propose an analytical calculation model for prediction of the shear resistance of grouped stud arrangements in the deck pockets. An advanced FEA model, validated by results of push-out experiments, is used to analyze the shear behavior of the grouped stud with smaller distance between them than recommended by EN 1994-1. Calculation model for shear resistance, which is consistent with the existing Eurocode rules, is proposed based on a newly introduced equivalent diameter of the stud group, $d_G$. The new calculation model is validated by comparison to the results of FE parametric study. The distance between the studs in the longitudinal direction and the number of stud rows and columns in the group are considered as the main variables.

Magnetism and Magnetocrystalline Anisotropy at fcc Fe (001) Surface

  • Yun, Won-Seok;Cha, Gi-Beom;Hong, Soon-Cheol
    • Journal of Magnetics
    • /
    • 제13권4호
    • /
    • pp.144-148
    • /
    • 2008
  • The size and surface effects on the magnetism of a fcc Fe (001) surface was investigated by performing firstprinciples calculations on 3, 5, 7, and 9 monolayers fcc Fe (001) single slabs with two different two-dimensional lattice constants, ${\alpha}=3.44{\AA}$ (System I) and 3.65 ${\AA}$ (System II), using the all-electron full-potential linearized augmented plane wave method within a generalized gradient approximation. The surface layers were coupled ferromagnetically to the subsurface layer in both systems. However, the magnetism of the inner layers was quite different from each other. While all the inner layers of System II were ferromagnetically coupled in the same way as the surface layer, the inner layers of System I showed a peculiar magnetism, bilayer antiferromagnetism. The calculated spin magnetic moments per Fe atom were approximately 2.7 and 2.9 ${\mu}_B$ at the surface for Systems I and II, respectively, due to the almost occupied Fe d-state being in the majority spin state and band narrowing. The spin orientations of System I were out-of-plane regardless of its thickness, whereas the orientation of System II changed from out-of-plane to in-plane with increasing thickness.

Al-Si-Fe 3원계 조성의 응고경로 예측 및 실험적 검증 (Prediction of Solidification Path in Al-Si-Fe Ternary System and Experimental Verification)

  • 이상환;이상목
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.34-45
    • /
    • 2010
  • The effects of alloy elements and cooling rate on the solidification path and the formation behavior of $\beta$ phase in Fe-containing Al-Si alloys were studied based on the thermodynamic analysis and the pertinent experiments. The thermodynamic calculation was systematically performed by using Thermo-Calc program. For the thermodynamic analysis in high alloy region of Al-Si-Fe ternary system, a thermodynamic database for Thermo-Calc was correctly updated and revised by the collected up-to-date references. For the thermodynamic-based prediction of various solidification paths in Fe-containing Al-Si system, liquidus projection of Al-Si-Fe ternary system, including isotherms, invariant, monovariant, bivariant reactions and equilibrium temperatures, was calculated and analyzed as functions of composition and temperature. The calculated results were compared to the experimental results using various casting specimens. In order to analyze various solidification sequences as functions of Si and Fe content, 4 representative alloy compositions, low Fe content in both low and high Si contents and high Fe content again in both low and high Si contents, were designed in this study. For better understanding of the influence of cooling rate on the formation behavior of $\beta$ phase, 4 alloys were solidified under furnace and rapidly cooled conditions. Cooling curves of solidified alloys were recorded by thermal analysis. Various important solidification events were evaluated using the first derivative-cooling curves. Microstructures of the casting samples were studied by the combined analysis of optical microscopy (OM) and scanning electron microscopy (SEM).