Browse > Article
http://dx.doi.org/10.4283/JKMS.2015.25.4.101

Magnetism and Magnetocrystalline Anisotropy of Ni/Fe(001) Surface: A First Principles Study  

Kwon, Oryong (Department of Physics, University of Ulsan)
Hong, Soon Cheol (Department of Physics, University of Ulsan)
Abstract
Recent theoretical calculations predicted that a system composed exclusively of 3d transition metals without 4d/5d transition metals or rare earth metals can have strong perpendicular magnetocrystalline anisotropy (MCA) if Fe and Ni layers are arranged appropriately. They considered only Fe-terminated surfaces, noting that Fe/MgO(001) and CoFeB/MgO(001) show strong perpendicular MCA. In this paper, we investigate magnetism and MCA of Ni/Fe(001) surface where Ni layer is positioned at the surface, by using complementarily the first principles calculational methods of Vienna Ab-initio Simulation Package (VASP) and Full-potential Linearized Augmented Plane Wave (FLAPW) method. Comparing results of magnetism and MCA obtained by VASP with the results by FLAPW method, we find the VASP results do not show big difference from results by FLAPW method. Magnetic moments of Fe and Ni are enhanced due to strong hybridization between Fe and Ni bands. MCA of Ni/Fe(001) is parallel to the surface, which implies the surface termination plays a crucial role in determining MCA of a system.
Keywords
magnetocrystalline anisotropy; first principles calculation; electronic structure; magnetism;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 A. D. Kent, Nat. Mater. 9, 699 (2010).   DOI   ScienceOn
2 S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat. Mater. 9, 721 (2010).   DOI   ScienceOn
3 S. Nakagawa and K.-i. Hirata, J. Magn. 18, 155 (2013).   DOI   ScienceOn
4 C.-Y. You and H. Kim, J. Magn. 18, 388 (2013).
5 M. B. Hossain, C. G. Kim, B. S. Chun, W. D. Kim, and C. Hwang, J. Magn. 19, 1 (2014).   DOI   ScienceOn
6 Y. J. Nam, T. Y. Lee, and S. H. Lim, J. Magn. 19, 232 (2014).   DOI   ScienceOn
7 B. Bialek and J. I. Lee, J. Magn. 20, 1 (2015).   DOI   ScienceOn
8 H.-S. Whang, S.-J. Yun, J. Moon, and S.-B. Choe, J. Magn. 20, 8 (2015).   DOI   ScienceOn
9 D. Odkhuu, S. H. Rhim, N. Park, K. Nakamura, and S. C. Hong, Phys. Rev. B 91, 014437 (2015).   DOI
10 P. Taivansaikhan, D. Odkhuu, S. H. Rhim, and S. C. Hong, J. Appl. Phys. 117, 17A327 (2015).   DOI   ScienceOn
11 A. B. Shick, S. C. Hong, F. Maca, and A. I. Lichtenstein, J. Phys.: Condens. Matter 26, 476003 (2014).   DOI
12 D. D. Lam, F. Bonell, S. Miwa, Y. Shiota, K. Yakushiji, H. Kubota, T. Nozaki, A. Fukushima, S. Yuasa, and Y. Suzuki, J. Magn. 18, 5 (2013).   DOI   ScienceOn
13 E. G. Kim, S. Y. Jekal, O. Kwon, and S. C. Hong, J. Korean Magn. Soc. 24, 35 (2014).   DOI   ScienceOn
14 S. Nakagawa and K.-i. Hirata, J. Magn. 18, 155(2013).   DOI   ScienceOn
15 K. Hotta, K. Nakamura, T. Akiyama, T. Ito, T. Oguchi, and A. J. Freeman, Phys. Rev. Lett. 110, 267206 (2013).   DOI
16 J. I. Lee, S. C. Hong, C. L. Fu, and A. J. Freeman, Phys. Rev. B 47, 810 (1993).   DOI   ScienceOn
17 G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169(1996).   DOI   ScienceOn
18 G. Kresse and J. Furthmuller, Comput. Mater. Sci. 5, 15 (1996).
19 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758(1999).
20 E. Wimmer, H. Krakauer, M.Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).
21 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI   ScienceOn
22 P. E. Blochl, Phys. Rev. B 50, 17953(1994).   DOI   ScienceOn