• Title/Summary/Keyword: FE analysis method

Search Result 1,530, Processing Time 0.025 seconds

Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis (인장시험과 유한요소해석으로 구한 파단 진변형률을 이용한 진응력-진변형률 선도 획득)

  • Lee, Kyoung-Yoon;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1054-1064
    • /
    • 2009
  • In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

Characteristics of Airborne and Deposited Dust in Expressway Toll Booths (고속도로 톨게이트 부스의 공기 중 분진 및 침착 분진 특성)

  • Nam, Mi Ran;Jung, Jong-Hyoen;Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2020
  • Objectives: This study was performed to evaluate the total dust, size-selective dust, and heavy metal concentrations generated inside and outside toll booths on an expressway and to identify the source through analysis of the components of the deposited dust. Methods: A total of 32 samples were collected from eight expressway toll booths. Each total dust sample was collected using a 37 mm PVC filter attached to a personal air sampler. Heavy metal samples were collected according to NIOSH method 7300. The size-selective dust concentrations were identified using a DustMate, and deposited dust was analyzed by WD-XRF and UHR-FE-SEM. Results: The geometric mean concentrations of the total dust inside and outside the toll booths were 337.5 ㎍/㎥ and 342.7 ㎍/㎥, respectively. The overall concentrations of TSP, PM10, PM2.5, and PM1 were higher on the outside of the toll booths, as the particle size of dust was larger, and higher in the underground passage as the dust size was smaller. The real-time analysis of the dust concentrations of TSP, PM10, PM2.5, and PM1 revealed to be higher at morning and evening times than other times because of heavy traffic. The element components of deposited dust in the toll booth were related to natural sources rather than artificial sources. Among the chemical components in the deposited dust analyzed by WD-XRF, SiO2 was the highest. For the elements analyzed by UHR-FE-SEM, C was the highest, followed by O, and Si. Conclusions: In order to reduce the dust concentrations around toll booths on an expressway, it is necessary to periodically clean surrounding areas such as underground passages, and it is also necessary to remove deposited dust inside the toll booth from time to time.

Properties of NiCuZn Ferrite by Variation of Element Materials (원료의 계열성분 변화에 따른 NiCuZn Ferrite 물성연구)

  • Kim, Tae-Hyoung;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.180-185
    • /
    • 2004
  • The electromagnetic properties and microstructures of the basic composition of (Ni$\sub$0.2/Cu$\sub$0.1/Zn$\sub$0.2/)$\sub$0.5/ (Fe$_2$O$_3$)$\sub$0.5/ were invested by changing of SO$_4$, Cl and NO$_3$ series. We were prepared by coprecipitation method and sintered at temperatures 950$^{\circ}C$, 1150$^{\circ}C$, l350$^{\circ}C$, respectively. When sintering at temperature 950$^{\circ}C$, Cl and NO$_3$ series became perfection sintering. On the other hand, SO$_4$ series showed perfection sintering at temperature 1150$^{\circ}C$. According to particle size analysis result, higher magnetic permeability and magnetization value were observed by Cl series than SO$_4$ or NO$_3$ series.

A Speed-Up in Computing Time for SSI Analysis by p-version Infinite Elements (p-version 무한요소를 적용한 지반-구조물 상호작용해석의 계산속도 향상)

  • Lim, Jae-Sung;Son, Il-Min;Kim, Jae-Min;Seo, Choon-Gyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.471-482
    • /
    • 2016
  • In this study, we focused on a speed-up of KIESSI-3D program, which is based on FE-IE techniques, by introducing a p-version dynamic infinite element method. In order to evaluate performance of the KIESSI-3D, numerical analyses for eight real-scale SSI problems are carried out. We considered three types of KIESSI-3D numerical models whose radii of near-field soil region($r_0$)are 1.2, 1.5, and 3.0 times of basemat radius of structure(R). In addition, SSI analyses using the SASSI2010 program are carried out used for comparison of accuracy and runtime against those of the KIESSI-3D. Numerical results show that the KIESSI-3D model of $r_0=1.2R$ is enough to give accurate solution. In view of the computing speed, the new KIESSI-3D was up to 25 times faster than the old KIESSI-3D.

Fracture Mechanics Assessment for Different Notch Sizes Using Finite Element Analysis Based on Ductile Failure Simulation (유한요소 연성파손 모사기법을 이용한 노치 결함 반경 크기에 따른 파괴역학적 평가)

  • Bae, Keun Hyung;Jeon, Jun Young;Han, Jae Jun;Nam, Hyun Suk;Lee, Dae Young;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.693-701
    • /
    • 2016
  • In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness($J_{IC}$) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.

Finite Element Analysis for Fracture Resistance of Fiber-reinforced Asphalt Concrete (유한요소해석을 통한 섬유보강 아스팔트의 파괴거동특성 분석)

  • Baek, Jongeun;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.77-83
    • /
    • 2015
  • PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions. METHODS : A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated. RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly. CONCLUSIONS : The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.

Post-Buckling Behaviour and Buckling Strength of the Circular Cylinder Under Axial Compression (압축하중을 받는 원통실린더의 후좌굴 거동 및 좌굴강도)

  • Koo, Bon Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.260-266
    • /
    • 2018
  • Cylindrical shells are often used in the construction of ship and land-based structures such as deck plating with a camber, side shell plating for fore and aft part pipes, as well as storage tanks. It has been believed that such curved shells can be modeled fundamentally as a part of the cylinder under axial compression. From the estimations made based on cylindrical models, it is known that in general, curvature increases the buckling strength of a curved shell when subjected to axial compression, and the same curvature is also expected to increase the overall strength. A series of elastic large deflection analyses were conducted in order to clarify the fundamentals observed in the buckling and post-buckling behaviour of circular cylinders under axial compression. In the present paper, an FE-series analysis has been performed based on the elastic large deflection behaviour, and the effect of parameters has been clarified. The ultimate strength behavior of the circular cylinder was found to be significantly influenced by both the initial deflection and the FE-modeling method.

The Statistical on Numerical Analysis for The Petrology and Bulk Chemical Composition. In Cheju Volcanic Island (제주화산도의 암석성분에 관한 통계학적인 수치해석)

  • 택훈
    • Journal of the Speleological Society of Korea
    • /
    • v.14 no.15
    • /
    • pp.42-90
    • /
    • 1987
  • Lee, Moon Won reported by 63 kinds lescribing the petrography and bulk chemical Composition in Petrology of Cheju volcanic island. The total Chemical Composition data was analyzed by the program of FORTRAN77. First, the Conversition equations and the scatter diagram were examined to the analysis, by the least square method. Next, a statistical data requested a mean Value, maximum value, minimum value, the range, the standard deviation, the variance, the Standord Error and the Coefficient of variation. In the standard deviation, a small Composition is MnO and P$_2$O$\sub$5/, a large Composition is SiO$_2$, Mgo and FeO. The Standard error and the variance were the tandency looked like the Standard deviation well. However, the Coefficient Variation differs from the Standard deviation. Where, a large Coefficient of variation are H$_2$O$\^$-/ and H$_2$O$\^$+/, a small Coefficient of variation are Al$_2$O$_3$ and SiO$_2$. The Correlation of Coefficient Can be Calculated numerically from the relation between SiO$_2$, Al$_2$O$_3$ and TiO$_2$ to other Compositions.

  • PDF

FE Analysis on the Sealing Characteristics of Multi-Contact Packing for Swivel Joint (스위블 연결구용 멀티접촉패킹의 밀봉특성에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.51-55
    • /
    • 2014
  • This paper was analyzed for a sealing characteristics of single lip contact type o-ring and multiple lip contact type packing for a swivel joint using the finite element method. According to the FE analysis, a conventional o-ring produces a maximum contact normal stress of 2.5MPa for a supplied LP gas pressure of 1.8MPa, which is related to the sealing performance. But, a sealing performance of newly invented multi-lip packing produces a maximum contact normal stress of 3.01MPa, which is 20.4% higher than that of a conventional o-ring. And an extrusion of a conventional o-ring, which is strongly related to the sealing endurance safety, was occurred at a supplied gas pressure of 1.62MPa. But, a multi-lip packing does not produce up to the gas pressure of 1.8MPa. This means that a new type of multi-lip packing may have excellent sealing characteristics because of no extrusion for high gas pressure. Thus, multi-lip packing with multiple lip contacts may be useful for high sealing and endurance safety compared to that of the conventional o-ring with a single lip contact.

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.