• 제목/요약/키워드: FE analysis method

Search Result 1,523, Processing Time 0.027 seconds

A Study of Characteristics of Soil-Pile-Structure Interaction Behavior on the Frequency Contents of the Seismic Waves (지진파의 주파수 특성에 따른 지반-말뚝-구조물 상호작용계의 거동 특성 분석)

  • 이종우;이필규;김문겸;김민규
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.295-308
    • /
    • 2004
  • In this study, several Soil-Structure-Interaction (SSI) analyses were performed using the developed FE-BE coupling method and the seismic response behavior of the structure's systems was determined. For the verification of the fundamental solution which is used in this analysis method, a dynamic analysis of the homogeneous ground was performed and it was compared to the results of Estorff et al. In order to verify the seismic response analysis, the results are compared with those of another commercial code. Several kindd of SSI analyses were performed and the seismic response associated with the rile foundation, seismic waves and a consideration of the ground nonlinearity were determined. As a result, it was found that the pile foundations didn't greatly helpful during the seismic event.

Nonlinear Buckling Analysis of H-Type Honeycombed Composite Column with Rectangular Concrete-Filled Steel Tube Flanges

  • Ji, Jing;Xu, Zhichao;Jiang, Liangqin;Yuan, Chaoqing;Zhang, Yunfeng;Zhou, Lijian;Zhang, Shilong
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1153-1166
    • /
    • 2018
  • This paper was concerned with the nonlinear analysis on the overall stability of H-type honeycombed composite column with rectangular concrete-filled steel tube flanges (STHCC). The nonlinear analysis was performed using ABAQUS, a commercially available finite element (FE) program. Nonlinear buckling analysis was carried out by inducing the first buckling mode shape of the hinged column to the model as the initial imperfection with imperfection amplitude value of L/1000 and importing the simplified constitutive model of steel and nonlinear constitutive model of concrete considering hoop effect. Close agreement was shown between the experimental results of 17 concrete-filled steel tube (CFST) specimens and 4 I-beams with top flanges of rectangular concrete-filled steel tube (CFSFB) specimens conducted by former researchers and the predicted results, verifying the correctness of the method of FE analysis. Then, the FE models of 30 STHCC columns were established to investigate the influences of the concrete strength grade, the nominal slenderness ratio, the hoop coefficient and the flange width on the nonlinear stability capacity of SHTCC column. It was found that the hoop coefficient and the nominal slenderness ratio affected the nonlinear stability capacity more significantly. Based on the results of parameter analysis, a formula was proposed to predict the nonlinear stability capacity of STHCC column which laid the foundation of the application of STHCC column in practical engineering.

Optimization and Development of Prediction Model on the Removal Condition of Livestock Wastewater using a Response Surface Method in the Photo-Fenton Oxidation Process (Photo-Fenton 산화공정에서 반응표면분석법을 이용한 축산폐수의 COD 처리조건 최적화 및 예측식 수립)

  • Cho, Il-Hyoung;Chang, Soon-Woong;Lee, Si-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.642-652
    • /
    • 2008
  • The aim of our research was to apply experimental design methodology in the optimization condition of Photo-Fenton oxidation of the residual livestock wastewater after the coagulation process. The reactions of Photo-Fenton oxidation were mathematically described as a function of parameters amount of Fe(II)($x_1$), $H_2O_2(x_2)$ and pH($x_3$) being modeled by the use of the Box-Behnken method, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The application of RSM using the Box-Behnken method yielded the following regression equation, which is an empirical relationship between the removal(%) of livestock wastewater and test variables in coded unit: Y = 79.3 + 15.61x$_1$ - 7.31x$_2$ - 4.26x$_3$ - 18x$_1{^2}$ - 10x$_2{^2}$ - 11.9x$_3{^2}$ + 2.49x$_1$x$_2$ - 4.4x$_2$x$_3$ - 1.65x$_1$x$_3$. The model predicted also agreed with the experimentally observed result(R$^2$ = 0.96) The results show that the response of treatment removal(%) in Photo-Fenton oxidation of livestock wastewater were significantly affected by the synergistic effect of linear terms(Fe(II)($x_1$), $H_2O_2(x_2)$, pH(x$_3$)), whereas Fe(II) $\times$ Fe(II)(x$_1{^2}$), $H_2O_2$ $\times$ $H_2O_2$(x$_2{^2}$) and pH $\times$ pH(x$_3{^2}$) on the quadratic terms were significantly affected by the antagonistic effect. $H_2O_2$ $\times$ pH(x$_2$x$_3$) had also a antagonistic effect in the cross-product term. The estimated ridge of the expected maximum response and optimal conditions for Y using canonical analysis were 84 $\pm$ 0.95% and (Fe(II)(X$_1$) = 0.0146 mM, $H_2O_2$(X$_2$) = 0.0867 mM and pH(X$_3$) = 4.704, respectively. The optimal ratio of Fe/H$_2O_2$ was also 0.17 at the pH 4.7.

Analysis of Heat Flow and Deformation in Laser Welding of Small Gas Pressure vessel (소형 가스용기 레이저 용접부의 열유동 및 변형해석에 관한 연구)

  • 박상국;김재웅;김기철
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • This study presents an analysis method for heat flow and deformation of sheet metal laser welding. A heat source model for 2-dimensional heat flow analysis of laser welding process was suggested in this paper. To investigate the availability of the heat source model, the analysis results were compared and estimated with the results of previous researches. We could get a good agreement between the results of numerical analysis and experiments in the temperature distribution of weldment. Due to the characteristics of welding process, some kinds of deformations are usually generated in a welded structure. Generally, the degree of deformation is dependent on the welding sequence constraints as well as input power Therefore, in this paper we evaluate the deformation of gas pressure vessel according to the welding sequence and input power. In the analysis of weld deformation, 2-dimensional thermo-elasto-plastic analysis was performed for the gas pressure vessel by using a commercial FE program package.

  • PDF

Enhancement of Buckling Characteristics for Composite Square Tube by Load Type Analysis (하중유형 분석을 통한 좌굴에 강한 복합재료 사각관 설계에 관한 연구)

  • Seokwoo Ham;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • The PIC design method is assigning different stacking sequences for each shell element through the preliminary FE analysis. In previous study, machine learning was applied to the PIC design method in order to assign the region efficiently, and the training data is labeled by dividing each region into tension, compression, and shear through the preliminary FE analysis results value. However, since buckling is not considered, when buckling occurs, it can't be divided into appropriate loading type. In the present study, it was proposed PIC-NTL (PIC design using novel technique for analyzing load type) which is method for applying a novel technique for analyzing load type considering buckling to the conventional PIC design. The stress triaxiality for each ply were analyzed for buckling analysis, and the representative loading type was designated through the determined loading type within decision area divided into two regions of the same size in the thickness direction of the elements. The input value of the training data and label consisted in coordination of element and representative loading type of each decision area, respectively. A machine learning model was trained through the training data, and the hyperparameters that affect the performance of the machine learning model were tuned to optimal values through Bayesian algorithm. Among the tuned machine learning models, the SVM model showed the highest performance. Most effective stacking sequence were mapped into PIC tube based on trained SVM model. FE analysis results show the design method proposed in this study has superior external loading resistance and energy absorption compared to previous study.

Unit Loadings of Heavy Metals by Non-point Sources - Case Study in a Valley Watershed - (비점원에 의한 중금속 원단위 부하량 - 곡간지 유역을 중심으로 -)

  • Kim, Jin-Ho;Han, Kuk-Heon;Lee, Jong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • The study was carried out to estimate runoff loads of heavy metals in the valley watershed at the middle of South Korea, during farming season. There were no other pollution sources except agricultural activity. From 27 April 2006 to 31 October 2007, water samples were collected using two methods. The first method was regular sampling wherein water samples were taken every two weeks; and the other method was through regular sampling when water were collected during each rainfall event. Results showed that heavy metals were found in the water from the regular samples, and were highest during May and June. It was presumed that this might have been contributed by farming activities. Heavy metal concentration of the irregular samples was lower than regular samples. The correlation coefficient between each heavy metal of the regular samples were as follows: Fe-Al>Cr-Al>Fe-Cr>Mn-Fe. The correlation coefficient of the irregular samples were the following: Fe-Al>Fe-Cu is positive; and Pb-Cu>Ni-Al is negative. Measured pollutant loads of heavy metals in the valley watershed were : 2.047 kg $day^{-1}$ of Al, 0.008 kg $day^{-1}$ of Cd, 0.034 kg $day^{-1}$ of Cr, 0.311 kg $day^{-1}$ of Cu, 0.601 kg $day^{-1}$ of Fe, and 0.282 kg $day^{-1}$ of Zn in 2006; while in 2007, the following were observed: 2.535 kg $day^{-1}$ of Al, 0.026 kg $day^{-1}$ of Cd, 0.055 kg $day^{-1}$ of Cu, 0.727 kg $day^{-1}$ of Fe, and 0.317 kg $day^{-1}$ of Zn. In the analysis of data gathered, the loading rates of effluents from the valley watershed during the rainy season were : 79.8% of Al, 69.1% of Cu, 82.5% of Fe, and 69.1% of Zn in 2006; while 69.9% of Al, 67.5% of Cu, 70.4% of Fe, and 67.5% of Zn in 2007.

A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures

  • Falsone, Giovanni;Ferro, Gabriele
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.599-613
    • /
    • 2006
  • A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.

Shell Finite Element for Nonlinear Analysis of Reinforced Concrete Containment Building (철근콘크리트 격납건물의 비선형 해석을 위한 쉘 유한요소)

  • Choun Young-Sun;Lee Hong-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.93-103
    • /
    • 2006
  • It is absolutely essential that safety assessment of the containment buildings during service life because containment buildings are last barrier to protect radioactive substance due to the accidents. Therefore, this study describes an enhanced degenerated shell finite element(FE) which has been developed for nonlinear FE analysis of reinforced concrete(RC) containment buildings with elasto-plastic material model. For the purpose of the material nonlinear analysis, Drucker-Prager failure criteria is adapted in compression region and material parameters which determine the shape of the failure envelop are derived from biaxial stress tests. Reissner-Mindlin(RM) assumptions are adopted to develop the degenerated shell FE so that transverse shear deformation effects is considered. However, it is found that there are serious defects such as locking phenomena in RM degenerated shell FE since the stiffness matrix has been overestimated in some situations. Therefore, shell formulation is provided in this paper with emphasis on the terms related to the stiffness matrix based on assumed strain method. Finally, the performance of the present shell element to analysis RC containment buildings is tested and demonstrated with several numerical examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

Improved Efficiency Design and Analysis of Single-Sided Linear Induction Motors (편측식 직선형 유도전동기의 효율 향상을 위한 설계 및 특성 해석)

  • Jang, Seok-Myeong;Kwon, Jeong-Ki;Cho, Han-Wook;You, Dae-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.9-11
    • /
    • 2004
  • In this paper, a new design method to improve efficiency of single-sided linear induction motor(SLIM) is presented. The method utilizes the space harmonic analysis, the equivalent circuit analysis and numerical analysis method. This paper deals with calculation of the design dimension of primary and secondary and the equivalent circuit parameters for SLIM. Finally, analytical results for SLIM designed are verified by FE results.

  • PDF