• Title/Summary/Keyword: FE analysis method

Search Result 1,530, Processing Time 0.027 seconds

Finite Element Based Multi-Scale Ductile Failure Simulation of Full-Scale Pipes with a Circumferential Crack in a Low Carbon Steel (유한요소기반 다중스케일 연성파손모사 기법을 이용한 원주방향 균열이 존재하는 탄소강 실배관의 파손예측 및 검증)

  • Han, Jae-Jun;Bae, Kyung-Dong;Kim, Yun-Jae;Kim, Jong-Hyun;Kim, Nak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.727-734
    • /
    • 2014
  • This paper describes multi-scale based ductile fracture simulation using finite element (FE) damage analysis. The maximum and crack initiation loads of cracked components were predicted using proposed virtual testing method. To apply the local approach criteria for ductile fracture, stress-modified fracture strain model was adopted as the damage criteria with modified calibration technique that only requires tensile and fracture toughness test data. Element-size-dependent critical damage model is also introduced to apply the proposed ductile fracture simulation to large-scale components. The results of the simulation were compared with those of the tests on SA333 Gr. 6 full-scale pipes at $288^{\circ}C$, performed by the Battelle Memorial Institute.

Development of Multidimensional Gap Conductance Model for Thermo-Mechanical Simulation of Light Water Reactor Fuel (경수로 핵연료 열-구조 연계 해석을 위한 다차원 간극 열전도도 모델 개발)

  • Kim, Hyo Chan;Yang, Yong Sik;Koo, Yang Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.157-166
    • /
    • 2014
  • A light water reactor (LWR) fuel rod consists of zirconium alloy cladding tube and uranium dioxide pellets with a slight gap between them. The modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel behavior under irradiated conditions. Many researchers have been developing fuel performance codes based on finite element method (FE) to calculate temperature, stress and strain for multidimensional analysis. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap element (VLG) has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model has been evaluated for variable cases.

Study on bearing capacity of combined confined concrete arch in large-section tunnel

  • Jiang Bei;Xu Shuo;Wang Qi;Xin Zhong Xin;Wei Hua Yong;Ma Feng Lin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.117-126
    • /
    • 2024
  • There are many challenges in the construction of large-section tunnels, such as extremely soft rock and fractured zones. In order to solve these problems, the confined concrete support technology is proposed to control the surrounding rocks. The large-scale laboratory test is carried out to clarify mechanical behaviours of the combined confined concrete and traditional I-steel arches. The test results show that the bearing capacity of combined confined concrete arch is 3217.5 kN, which is 3.12 times that of the combined I-steel arch. The optimum design method is proposed to select reasonable design parameters for confined concrete arch. The parametric finite element (FE) analysis is carried out to study the effect of the design factors via optimum design method. The steel pipe wall thickness and the longitudinal connection ring spacing have a significant effect on the bearing capacity of the combined confined concrete arch. Based on the above research, the confined concrete support technology is applied on site. The field monitoring results shows that the arch has an excellent control effect on the surrounding rock deformation. The results of this research provide a reference for the support design of surrounding rocks in large-section tunnels.

A Hierarchical Grid Alignment Algorithm for Microarray Image Analysis (마이크로어레이 이미지 분석을 위한 계층적 그리드 정렬 알고리즘)

  • Chun Bong-Kyung;Jin Hee-Jeong;Lee Pyung-Jun;Cho Hwan-Gue
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.2
    • /
    • pp.143-153
    • /
    • 2006
  • Microarray which enables us to obtain hundreds and thousands of expression of gene or genotype at once is an epoch-making technology in comparative analysis of genes. First of all, we have to measure the intensity of each gene in an microarray image from the experiment to gain the expression level of each gene. But it is difficult to analyze the microarray image in manual because it has a lot of genes. Meta-gridding method and various auto-gridding methods have been proposed for this, but thew still have some problems. For example, meta-gridding requires manual-work due to some variations in spite of experiment in same microarray, and auto-gridding nay not carried out fully or correctly when an image has a lot of noises or is lowly expressed. In this article, we propose Hierarchical Grid Alignment algorithm for new methodology combining meta-gridding method with auto-gridding method. In our methodology, we necd a meta-grid as an input, and then align it with the microarray image automatically. Experimental results show that the proposed method serves more robust and reliable gridding result than the previous methods. It is also possible for user to do more reliable batch analysis by using our algorithm.

FE-Analysis on void closure behavior during hot open die forging process (열간 자유단조 공정시 내부 기공 압착 거동에 관한 해석)

  • Kwon, Y.C.;Lee, J.H.;Lee, S.W.;Jung, Y.S.;Kim, N.S.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.160-164
    • /
    • 2007
  • In the steel industry, there is a need to produce large forged parts for the automobile industries, the flight and shipping industries ad military industries. In the steel-industry application, a cogging technique for cast ingots is required, because the major parts are needed as one large body in order to obtain higher quality. Therefore, cogging process is the primary step in manufacturing of practically large open-die forging. In the cogging process, internal voids have to be eliminated as defects, The present work is concerned with the elimination of the internal voids in large ingots so as obtain sound products. In this study, hot compression tests were carried out to obtain the flow stress of cast microstructure at different temperature and strain rates. The FEM analysis are performed to investigate the overlap defect of cast ingots during cogging stage. The measure flow stress data were used to simulate the cogging process of cast ingot using the practical material properties. Also the analysis of void closure are performed by using the $DEFORM^{TM}$-3D. The calculated results of void closure behavior are compared with the measured results before and after cogging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the void closure can be investigated by the comparison of practical experiment and numerical analysis.

  • PDF

Analysis of Iron Production Technology of Army against Japanese through Slag from Saengsoegol Iron Production Site

  • Kim, Minjae;Chung, Kwangyong
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.317-329
    • /
    • 2019
  • Slag was collected from the iron-producing furnace site in Saengsoegol, Baegun mountain, where iron was manufactured by a righteous army against Japan in the Gwangyang region; then, the iron-manufacturing technique of the early modern period was investigated through scientific analysis. In the microstructure analysis results of the selected samples, iron bloom was mainly observed together with magnetite and fayalite. In the component analysis results of the compounds, it was confirmed that the furnace was built by using gangue of alkali feldspar or plagioclase series, and the ironmaking work was performed at a high temperature of at least 1050℃, because mullite was identified together with cristobalite and hercynite. Based on the chemical composition, it was speculated that low-grade iron ores were used as raw materials, and it seemed that the yield was low, because the total Fe content of the smelting slag samples was 37.72-49.93%. It was difficult to confirm whether a slag former was used, and it seemed that materials easily obtained nearby were used when the furnace was built, without considering the corrosion resistance. It appeared that the ironmaking work was performed at the Gwangyang Saengsoegol iron-producing furnace based on the direct ironmaking method in an environment that could escape the vigilance of the Japanese Empire to produce weapons that would be used for the resistance against Japan. It seemed that there was neither an advanced ironware production system nor a mass production system, and small-scale works were performed in short periods of time.

Design of Wave Energy Extractor with a Linear Electric Generator -Part II. Linear Generator (선형발전기가 탑재된 파랑에너지 추출장치 설계 -II. 선형발전기)

  • Cho, Il Hyoung;Choi, Jang Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.174-181
    • /
    • 2014
  • Design procedure of LEG(Linear Electric Generator) is introduced by performing the time-domain analysis for the heaving motion of a floating buoy coupled with LEG. A vertical truncated buoy is selected as a point absorber and a double-sided Halbach array mover and cored slotless stator is adopted as a linear electric generator. LEG with a double-sided Halbach array mover and cored slotless stator is designed with the input data such as the heave motion velocity and wave exciting forces in time-domain. The validity of designed LEG is confirmed by performing generating-characteristic-analysis under the sinusoidal motion of a buoy, based on the numerical techniques such as FE(Finite Element) analysis. In particular, an ECM(Equivalent Circuit Method) is employed as the design tool for the prediction of generating characteristics under irregular wave conditions. Finally, we confirm that the ECM gives reasonable and fast results without sacrifice of accuracy.

Analysis of Plugging Effect for Large Diameter Steel Pipe Piles Considering Driveability (CEL Method) (항타시공성을 고려한 대구경 항타강관말뚝의 폐색효과 분석(CEL해석))

  • Jeong, Sang-Seom;Song, Su-Min;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.21-33
    • /
    • 2017
  • This paper presents the analysis of plugging effect especially when the large diameter steel pipe pile was installed by considering driveability (BPM, blow per meter). The Coupled Eulerian-Lagrangian (CEL) technique was used to simulate the driving of open-ended piles into soil. To consider the driveability, the applied driving energy for each pile was obtained from the analysis results by using the wave equation. The parametric studies were performed for different pile diameters, penetration depths of pile, soil elastic modulus and BPM. It was found that the SPI is almost constant with increasing both the pile diameter and the required driving energy. It is also found that the plugging effect increases with increasing the pile length, resulting in the increase of lateral earth pressure. Based on this study the apparent magnitude and distribution of the lateral earth pressure is proposed for inside portion mobilizing soil plug.

Study on the Determination of Fatigue Damage Parameter for Rubber Component under Multiaxial Loading (다축하중이 작용하는 방진고무부품 피로손상 파라미터 결정에 관한 연구)

  • Moon, Seong-In;Woo, Chang-Su;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.194-200
    • /
    • 2012
  • Rubber components have been widely used in automotive industry as anti-vibration components for many years. These subjected to fluctuating loads, often fail due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop the durability analysis process for vulcanized rubber components, which is applicable to predict fatigue life at initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. In order to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and strain energy density was proposed as the fatigue damage parameter for rubber components. The fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed.

A Study on Generalization of Cyclic Plasticity Model and Application of 3-Dimensional Elastic-Plastic FEM of SM570 (SM570강재의 반복소성모델의 정식화 및 3차원 탄소성 유한요소적용에 관한 연구)

  • 장경호;장갑철;이은택
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.59-65
    • /
    • 2004
  • Recently, as steel structures become higher and more long-spanned, application of high strength steel. SM570, is considered, For accurate seismic design, seismic analysis of steel structures needs a constitutive equation describing the characteristic of steel materials under non-proportional cyclic loading, While the use of SM570 material is much increased these days, research for description and generalization of cyclic plasticity behavior are insufficient, In this study, a cyclic plasticity model is proposed by results of material tests, i.e, monotonic and low cycle tests, Proposed cyclic plasticity model is applied to 3-Dimensional FE program and we carried out seismic analysis of pipe-section steel pier using SM570, Comparison between experiment and analysis results shows that the proposed constitutive equation is able to describe exactly the complicated plastic behavior of steel structure using SM570.