• Title/Summary/Keyword: FDM 3D printing

Search Result 119, Processing Time 0.025 seconds

A study of making a dress form for women using a 3D printer (3D 프린터를 이용한 여성용 인대 제작 연구)

  • Oh, Seol Young
    • The Research Journal of the Costume Culture
    • /
    • v.24 no.6
    • /
    • pp.725-742
    • /
    • 2016
  • In the Korean fashion industry, 3D printing systems are considered as new technology and a new opportunity. With 3D printers, consumers can be manufacturers and individuals can develop businesses with little upfront capital. In this study, a dress form for the typical Korean women's body shape was developed using 3D technology (3D scanning, 3D modeling, and 3D printing). Ten women with apparel sizes 85-91-160 were selected from 3D body-scan data collected by SizeKorea of 201 women aged 25 to 34 (2010). First, 15 horizontal cross-sections were collected from the 3D scan data of the 10 subjects. Then, inside lines of those cross-sections were drawn at 15-degree intervals, and the lengths were measured. The average of the inside lines was connected to the internal spline curve, and the curves were used as the average cross-sections. The average torso body and the dress form of Korean women were developed into a 3D solid model using a 3D CAD program (Solidworks 2012). An output mockup was printed by the FDM type's 3D printing system (Bonbot 1200, Bonbot 3-H4) using PLA material. The dimensions comparing the 3D solid modeling to the 3D printed mockup of the dress form were measured, and minor differences were between 0.00cm and 0.40cm. In the future, 3D printing systems are expected to be in use for various personalized dress forms.

Size Distributions of Particulate Matter Emitted during 3D Printing and Estimates of Inhalation Exposure (3D 프린팅 가동 조건 별 발생 입자크기 분포와 흡입 노출량 추정)

  • Park, Jihoon;Jeon, Haejoon;Park, Kyungho;Yoon, Chungsik
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.6
    • /
    • pp.524-538
    • /
    • 2018
  • Objective: This study aimed to identify the size distributions of particulate matter emitted during 3D printing according to operational conditions and estimate particle inhalation exposure doses at each respiratory region. Methods: Four types of printing filaments were selected: acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA), Laywood, and nylon. A fused deposition modeling (FDM) 3D printer was used for printing. Airborne particles between 10 nm and $10{\mu}m$ were measured before, during, and after printing using real-time monitors under extruder temperatures from 215 to $290^{\circ}C$. Inhalation exposures, including inhaled and deposited doses at the respiratory regions, were estimated using a mathematical model. Results: Nanoparticles dominated among the particles emitted during printing, and more particles were emitted with higher temperatures for all materials. Under all temperature conditions, the Laywood emitted the highest particle concentration, followed by ABS, PLA, and nylon. The particle concentration peaked for the initial 10 to 20 minutes after starting operations and gradually decreased with elapsed time. Nanoparticles accounted for a large proportion of the total inhaled particles in terms of number, and about a half of the inhaled nanoparticles were estimated to be deposited in the alveolar region. In the case of the mass of inhaled and deposited dose, particles between 0.1 and $1.0{\mu}m$ made up a large proportion. Conclusion: The number of consumers using 3D printers is expected to expand, but hazardous emissions such as thermal byproducts from 3D printing are still unclear. Further studies should be conducted and appropriate control strategies considered in order to minimize human exposure.

Evaluation of mechanical properties of polylactic acid and photopolymer resin processed by 3D printer fused deposition modeling and digital light processing at cryogenic temperature

  • Richard G. Pascua;Gellieca Dullas;SangHeon Lee;Hyung-Seop Shin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.2
    • /
    • pp.19-23
    • /
    • 2024
  • 3D printing has the advantage of being able to process various types of parts by layering materials. In addition to these advantages, 3D printing technology allows models to be processed quickly without any special work that can be used in different fields to produce workpieces for various purposes and shapes. This paper deals to not only increase the utilization of 3D printing technology, but also to revitalize 3D printing technology in applications that require similar cryogenic environments. The goal of this study is to identify the mechanical properties of polylactic acid and photopolymer resin processed by Fused Deposition Modeling (FDM) and Digital Light Processing (DLP) respectively. The entire process is meticulously examined, starting from getting the thermal contraction using an extensometer. A uniaxial tensile test is employed, which enables to obtain the mechanical properties of the samples at both room temperature (RT) and cryogenic temperature of 77 K. As the results, photopolymer resin exhibited higher tensile properties than polylactic acid at RT. However, at cryogenic temperatures (77 K), the photopolymer resin became brittle and failure occurred due to thermal contraction, while polylactic acid demonstrated superior tensile properties. Therefore, polylactic acid is more suitable for lower temperatures.

A Study on the Analysis of the Trend of installations Using 3D Printing Technique (3D프린팅 조형설치물 경향분석에 관한 연구)

  • Kim, Ji Min;Lee, Tae Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.52-60
    • /
    • 2021
  • The aim of this study was to derive a new trend by analyzing installations using 3D printing that are out of the limits of size and design according to the trends of developing 3D printing technology. This paper classified the types of installations using 3D printing and analyzed them with two trends: the trend of design and the trend of output. The trends of installations using 3D printing derived from this study are as follows. First, as the implementation of design through an algorithm is accomplished, the transformation appears with the atypical design that is prominent in complex expression. Second, Robotics and FDM 3D Printing is fused, which is changing the existing paradigm. Therefore, the production and utilization of installations using 3D printing proceeded at a faster pace through the interaction between the algorithm design method and freeform 3D printing technology. This study was conducted on installations using 3D printing around the world and played a basic role in the research on the production of installations using 3D printing along with domestic 3D printing technology to be developed in the future. Follow-up studies in various aspects, such as materials and combination methods, will be needed.

Making Human Phantom for X-ray Practice with 3D Printing (3D 프린팅을 활용한 일반 X선 촬영 실습용 인체 팬텀 제작)

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • General phantom for practical X-ray photography Practical phantom is an indispensable textbook for radiology, but it is difficult for existing commercially available phantom to be equipped with various kinds of phantom because it is an expensive import. Using 3D printing technology, I would like to make the general phantom for practical X-ray photography less expensive and easier. We would like to use a skeleton model that was produced based on CT image data using a 3D printer of FDM (Fused Deposition Modeling) method as a phantom for general X-ray imaging. 3D slicer 4.7.0 program is used to convert CT DICOM image data into STL file, convert it to G-code conversion process, output it to 3D printer, and create skeleton model. The phantom of the completed phantom was photographed by X - ray and CT, and compared with actual medical images and phantoms on the market, there was a detailed difference between actual medical images and bone density, but it could be utilized as a practical phantom. 3D phonemes that can be used for general X-ray practice can be manufactured at low cost by utilizing 3D printers which are low cost and distributed and free 3D slicer program for research. According to the future diversification and research of 3D printing technology, it will be possible to apply to various fields such as health education and medical service.

Production and Utility Assessment of Pediatric Genital Shields Using 3D Printing Technology with Colorjet 3D Printing (결합제 분사 방식 3D 프린팅 기술을 활용한 소아 생식기 차폐체 제작 및 유용성 평가)

  • In-Ja Lee;Da-Yeong Hong
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • In this study, the aim was to assess the shielding performance of different 3D printing materials, specifically those produced using FDM, SLA, and CJP methods, with a focus on their application as shielding devices in clinical settings. Additionally, the weight of lead shielding materials can evoke reluctance in pediatric patients undergoing X-ray imaging. A total of 12 materials were printed using their respective 3D printers. These materials were then subjected to X-ray testing using diagnostic X-ray equipment and an exposure meter. The goal was to evaluate their shielding capabilities in comparison to 1 mm lead. The results of this evaluation revealed that VisiJet PXL-Pastel, produced using the CJP method, exhibited the highest shielding performance. Therefore, VisiJet PXL-Pastel by CJP method was selected for the creation of a shielding device designed for pediatric reproductive organs. Subsequent tests demonstrated that both the newly created shielding device and conventional lead shielding equipment achieved the same maximum shielding rate at 50 kVp. Specifically, the shielding rate for the 3D printed device was measured at 84.53%, while the conventional lead shielding equipment, categorized as Apron1 (85.74%), Apron2 (99.98%), and Apron3 (99.04%), demonstrated similar performance. In conclusion, the CJP-produced VisiJet PXL-Pastel material showcased excellent radiation shielding capabilities, allowing for anatomical observations of the target organs and their surrounding structures in X-ray images. Furthermore, its lower weight in comparison to traditional lead shielding materials makes it a clinically practical and useful choice, particularly for pediatric applications.

Finite Element Analysis(fem) of The Fixed Position of the Velcro Band for the 3D Print Wrist Brace made using the Dicom File (CT Dicom 파일을 이용하여 제작한 3D Print 손목보호대용 Velcro band 고정위치의 유한요소해석(FEM))

  • Choi, Hyeun-Woo;Seo, An-Na;Lee, Jong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.585-590
    • /
    • 2021
  • Wrist braces are being used for patients with wrist trauma. Recently, many studies have been conducted to manufacture custom wrist braces using 3D printing technology. Such 3D printing customized orthosis has the advantage of reflecting various factors such as reflecting different shapes for each individual and securing breathability. In this paper, the stress on the orthosis by the number and position of Velcro bands that should be considered when manufacturing a 3D printing custom wrist brace was analyzed. For customized orthosis, 3D modeling of the bone and skin regions was performed using an automatic design software (Reconeasy 3D, Seeann Solution) based on CT images. Based on the 3D skin area, a wrist orthosis design was applied to suit each treatment purpose. And, for the elasticity of the brace, a wrist brace was manufactured with an FDM-type 3D printer using TPU material. To evaluate the effectiveness according to the number and position of the Velcro band of the custom 3D printed wrist brace, the stress distribution of the brace was analyzed by the finite element method (FEM). Through the finite element analysis of the wrist orthosis performed in this study, the stress distribution of the orthosis was confirmed, and the number and position of the orthosis production and Velcro bands could be confirmed. These experimental results will help provide quality treatment to patients.

Identification and Optimization of Dominant Process Parameters Affecting Mechanical Properties of FDM 3D Printed Parts (압출적층조형 공정 기반 3D 프린팅 제품 기계적 특성의 지배적 공정인자 도출 및 최적화에 관한 연구)

  • Kim, Jung Sub;Jo, Nanhyeon;Nam, Jung Soo;Lee, Sang Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.607-612
    • /
    • 2017
  • Recently, additive manufacturing (AM) technology, also known as 3D printing technology, has attracted attention as an innovative production method to fabricate functional components having complex shapes with saving materials. In particular, a fabrication of poly lactic acid (PLA) parts through a fused deposition modeling (FDM) technique has attracted much attention in the medical field. In this paper, an experimental study on the identification of dominant process parameters influencing mechanical properties of PLA parts fabricated by the FDM process is conducted, and their optimal values for maximizing the mechanical properties are obtained. Three process parameters are considered in this research, namely, layer thickness, a part orientation and in-fill. It is known that thin layer thickness, part orientation diagonal to the tension direction, and full in-fill are optimal conditions to maximize the mechanical properties.

Experimental Validation of Topology Design Optimization Considering Lamination Direction of Three-dimensional Printing (3D 프린팅 적층 방향을 고려한 위상최적설계의 실험적 검증)

  • Park, Hee-Man;Lee, Gyu-Bin;Kim, Jin-san;Seon, Chae-Rim;Yoon, Minho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • In this study, the anisotropic mechanical property of fused deposition modeling three-dimensional (3D) printing based on lamination direction was verified by a tensile test. Moreover, the property was applied to solid isotropic materials with penalization-based topology optimization. The case of the lower control arm, one of the automotive suspension components, was considered as a benchmark problem. The optimal topological results varied depending on the external load and anisotropic property. Based on these results, two test specimens were fabricated by varying the lamination direction of 3D printing; a tensile test utilizing 3D non-contact strain gauge was also conducted. The measured strain was compared with that obtained by computer-aided engineering response analysis. Quantitatively, the measurement and analysis results are found to have good agreement. The effectiveness of topology optimization considering the lamination direction of 3D printing was confirmed by the experimental result.

Development of Wearable Fashion Prototypes Using Entry-Level 3D Printers (보급형 3D 프린터를 활용한 착용형 패션 프로토타입 개발)

  • Chun, Jaehoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.3
    • /
    • pp.468-486
    • /
    • 2017
  • In this study, three kinds of wearable fashion prototypes were developed using 3D printers with the goal of developing a practical production method for daily clothes. Prototypes were modeled using Rhinoceros software and developed using FDM 3D printers and TPU filaments. The results of this study are as follows. First, it confirmed the possibility of FDM-type entry-level 3D printers as a tool to develop wearable fashion products. Second, TPU filaments that are soft and ductile are highly likely to be used as a clothing material. Third, patterns designed through the 3D modeling process can be sampled directly to a 3D printer and easily corrected and supplemented. Fourth, it was confirmed that TPU prints of about 1.00mm thickness can be sewn with fabric using sewing machines through the development of 'Prototype 1' and 'Prototype 2'; in addition, hand stitching is also possible. Fifth, as in the case of 'Prototype 3', it is possible to fabricate a garment fit enough to the body if the clothing configuration is designed to connect the basic module using TPU filaments. In the future, the development of wearable fashion prototypes using various materials and 3D printing technology will help diversify everyday clothes.